Contact:

Pierre Bessiére

CNRS - Laboratoire GRAVIR
655 avenue de 1I’Europe
38334 Montbonnot

FRANCE

BAYESIAN

| ROBOT

PROGRAMMING

Email: Pierre.Bessiere@imag.fr
Telephone: +33(0)4.76.61.55.09

WWW: www-laplace.imag.fr

ZIINRIA

Bayesian Programming

Page 2

To the late Edward T. Jaynes

for his doubt about certitudes

and for his certitude about probabilities

Page 3

Bayesian Programming

Page 4

This booklet provides an overview of the work done at the University of Grenoble about
Bayesian Robot Programming.

It is a collection of 7 papers corresponding to 6 of the 7 PhD thesis that have been
defended in Grenoble during the past 7 years on this subject plus one corresponding to an
ongoing work.

The papers are the following:

1. Bayesian Robot Programming (2004); Lebeltel, O. et al.; Autonomous Robots

2. The design and implementation of a Bayesian CAD modeler for robotic applications
(2001); Mekhnacha, K. et al.; Advanced Robotics

3. Hierarchies of probabilistic models of navigation: the Bayesian Map and the Abstrac-
tion operator (2004); Diard, J. et al.; International Conference on Robotics &

Automation (ICRA)

4. Bayesian Occupancy Filtering for Multi-Target Tracking : an Automotive Application
(2004); Coué, C. et al.; International Journal of Robotic Research (IJRR)

5. The CyCab: a Car-Like Robot Navigating Autonomously and Safely Among Pedes-

trians (2004); Pradalier, C. et al.; Robotics and Autonomous Systems

6. Teaching Bayesian Behaviours to Video Game Characters (2004); Le Hy, R. et al.;

Robotics and Autonomous Systems

7. The Ariadne’s Clew Algorithm (1998); Ahuactzin, J-M.; Journal of Artificial Intelli-
gence Research (JAIR)

Page 5

Bayesian Programming

Page 6

;:‘ Autonomous Robots 16, 49-79, 2004
' (© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Bayesian Robot Programming

OLIVIER LEBELTEL, PIERRE BESSIERE, JULIEN DIARD AND EMMANUEL MAZER
Laboratoire GRAVIR, CNRS, INRIA, 655 Avenue de I’Europe, 38334 St. Ismier, France

Pierre.Bessiere @imag.fr

Abstract. We propose a new method to program robots based on Bayesian inference and learning. It is called
BRP for Bayesian Robot Programming. The capacities of this programming method are demonstrated through
a succession of increasingly complex experiments. Starting from the learning of simple reactive behaviors, we
present instances of behavior combination, sensor fusion, hierarchical behavior composition, situation recognition
and temporal sequencing. This series of experiments comprises the steps in the incremental development of a complex
robot program. The advantages and drawbacks of BRP are discussed along with these different experiments and
summed up as a conclusion. These different robotics programs may be seen as an illustration of probabilistic
programming applicable whenever one must deal with problems based on uncertain or incomplete knowledge. The

scope of possible applications is obviously much broader than robotics.

Keywords: Bayesian robot programming, control of autonomous robots, computational architecture for au-

tonomous systems, theory of autonomous systems

1. Introduction

We assume that any model of a real phenomenon is
incomplete. There are always some hidden variables,
not taken into account in the model, that influence the
phenomenon. The effect of these hidden variables is
that the model and the phenomenon never have the
same behavior.

Any robot system must face this central difficulty:
how to use an incomplete model of its environment to
perceive, infer, decide and act efficiently? We propose
an original robot programming method that specifically
addresses this question.

Rational reasoning with incomplete information is
quite a challenge for artificial systems. The purpose of
Bayesian inference and learning is precisely to tackle
this problem with a well established formal theory. BRP
heavily relies on this Bayesian framework.

We present several programming examples to illus-
trate this approach and define descriptions as generic
programming resources. We show that these resources
can be used to incrementally build complex programs
in a systematic and uniform framework. The system is
based on the simple and sound basis of Bayesian in-

ference. It obliges the programmer to explicitly state
all assumptions that have been made. Finally, it per-
mits effective treatment of incomplete and uncertain
information when building robot programs.

The paper is organized as follows. Section 2 offers a
short review of the main related work, Section 3 is dedi-
cated to definitions and notations and Section 4 presents
the experimental platform. Sections 5 to 9 present var-
ious instances of Bayesian programs: learning simple
reactive behaviors, instances of behavior combinations,
sensor fusion, hierarchical behavior composition; situ-
ation recognition, and temporal sequencing. Section 10
describes a combination of all these behaviors to pro-
gram a robot to accomplish a night watchman task.
Finally, we conclude with a synthesis summing up
the principles, the theoretical foundations and the pro-
gramming method. This concluding section stresses the
main advantages and drawbacks of BRP.

2. Related Work

Our work is based on an implementation of the princi-
ple of the Bayesian theory of probabilities.

50 Lebeltel et al.

In physics, since the precursory work of Laplace
(1774, 1814), numerous results have been obtained us-
ing Bayesian inference techniques (to take uncertainty
into account) and the maximum entropy principle (to
take incompleteness into account). The late Edward
T. Jaynes proposed a rigorous and synthetic formal-
ization of probabilistic reasoning with his “Probability
as Logic” theory (Jaynes, 2003). A historical review
of this approach was offered by Jaynes (1979) and an
epistemological analysis, by Matalon (1967). Theoret-
ical justifications of probabilistic inference and max-
imum entropy are numerous. The entropy concentra-
tion theorems (Jaynes, 1982; Robert, 1990) are among
the more rigorous, Cox theorem (Cox, 1961) being
the most well known, although it has been partially
disputed recently by Halpern (1999a, 1999b). Numer-
ous applications and mathematical tools have been de-
veloped (Smith and Grandy, 1985; Tarentola, 1987;
Bretthorst, 1988; Erickson and Smith, 1988a, 1988b;
Mohammad-Djafari and Demoment, 1992; Kapur and
Kesavan, 1992).

In artificial intelligence, the importance of reason-
ing with uncertain knowledge has been recognized for
a long time. However, the Bayesian approach clearly
appeared as one of the principle trends only since the
proposal of Bayesian nets (Pearl, 1988) and graphical
models (Lauritzen and Spiegehalter, 1988; Lauritzen,
1996; Jordan, 1998; Frey, 1998). Bayesian inference
has been proved to be an NP-hard problem (Cooper,
1990). However, very important technical progress has
been achieved recently which permits approximated
computation in reasonable time (Saul et al., 1996;
Zhang and Poole, 1996; Delcher et al., 1996; Darwiche
and Provan, 1997; Koller and Pfeffer, 1997; Ruiz et al.,
1998; Jaakola and Jordan, 1999; Jordan et al., 1999).

Recent robot programming architectures (Aji and
McEliece, 2000; Borrelly et al., 1998; Schneider et al.,
1998; Dekhil and Henderson, 1998; Mazer et al., 1998)
are in general not concerned with the problem of un-
certainty. In robotics, the uncertainty topic was either
related to calibration (Bernhardt and Albright, 1993) or
to planning problems (Brafman et al., 1997). In the lat-
ter case, some authors have considered modeling the
uncertainty of the robot motions when planning as-
sembly operations (Lozano-Perez et al., 1984; Donald,
1988) or modeling the uncertainty related to the posi-
tion of the robot in a scene (Kapur and Kesavan, 1992).
More recently Bayesian techniques have been largely
used in POMDP! to plan complex paths in partially
known environments (Kaelbling et al., 1996a, 1996b,

1998; Koening and Simmons, 1998; Beetz and Belker,
2001; Lane and Kaebling, 2001) or for action selec-
tion (Rosenblatt, 2000). HMM? are also used to plan
complex tasks and recognize situations in complex en-
vironments (Aycard, 1998; Thrun, 1998). Finally, a lot
of works have been done about probabilistic localiza-
tion and navigation (Shatkay, 1998) either with prob-
abilistic occupancy grids (Konolidge, 1997), Markov
localization (Thrun et al., 1998; Gutmann et al., 1998;
Murphy, 1999; Fox et al., 2000) correlation-based
Markov localization (Konolidge and Chou, 1999),
Particle filters (Fox et al., 2001) or Kalman filtering
(Roumeliotis and Bekey, 2000a, 2000b).

However, to the best of our knowledge, the design
of a robot programming system and architecture solely
based on Bayesian inference has never been inves-
tigated before the PhD of Olivier Lebeltel, summa-
rized in the present paper (Lebeltel, 1999; Diard and
Lebeltel, 1999, 2000; Lebeltel et al., 2000). A paper by
Thrun (2000) explored this same direction but with less
generality. BRP is a simple and generic framework for
robot programming in presence of incompletness and
uncertainty. It may be used as a unique formalism to
restate and compare numerous classical probabilistic
models such as for instance, Bayesian Network (BN),
Dynamic Bayesian Network (DBN), Bayesian Filters,
Hidden Markov Models (HMM), Kalman Filters, Par-
ticle Filters, Mixture Models, or Maxim Entropy Mod-
els. This is detailed in a survey by Bessiere et al.
(2003).

Finally, a presentation of the epistemological foun-
dations of BRP may be found in two articles by Bessiere
et al. (1998a, 1998b).

3. Basic Concepts

In this section, we introduce the concepts, postulates,
definitions, notations and rules that are necessary to
define a Bayesian robot program.

It may be read twice, at first rapidly to acquire the
main concepts, and revisited after the instances sections
(5 to 11) to understand in detail the formal definitions.

3.1. Definition and Notation

3.1.1. Proposition. The first concept we will use is the
usual notion of logical proposition. Propositions will
be denoted by lowercase names. Propositions may be
composed to obtain new propositions using the usual

logical operators: a A b denoting the conjunction of
propositions a and b, a Vv b their disjunction and —a
the negation of proposition a.

3.1.2. Variable. The notion of discrete variable is the
second concept we require. Variables will be denoted
by names starting with one uppercase letter.

By definition, a discrete variable X is a set of logical
propositions x; such that these propositions are mutu-
ally exclusive (for all 7, j with i # j, x; A y; is false)
and exhaustive (at least one of the propositions x; is
true). x; stands for “variable X takes its ith value”.
| X | denotes the cardinal of the set X (the number of
propositions x;).

The conjunction of two variables X and Y, denoted
X ® 7Y, is defined as the set of | X] x Y] proposi-
tions x; A y;. X ® Y is a set of mutually exclusive and
exhaustive logical propositions. As such, it is a new
variable.? Of course, the conjunction of n variables is
also a variable and, as such, it may be renamed at any
time and considered as a unique variable in the sequel.

3.1.3. Probability. Tobe able to deal with uncertainty,
we will attach probabilities to propositions.

We consider that, to assign a probability to a propo-
sition a, it is necessary to have at least some pre-
liminary knowledge, summed up by a proposition 7.
Consequently, the probability of a proposition a is al-
ways conditioned, at least, by . For each different
7, P(. | m) is an application assigning to each propo-
sition a a unique real value P(a | 7) in the interval
[0, 1].

Of course, we will be interested in reasoning on
the probabilities of the conjunctions, disjunctions and
negations of propositions, denoted, respectively, by
PlaAb|m),PlaVvb|mx)and P(—a | 7).

We will also be interested in the probability of propo-
sition a conditioned by both the preliminary knowledge
7 and some other proposition b. This will be denoted
P(a | b A 7).

For simplicity and clarity, we will also use prob-
abilistic formula with variables appearing instead of
propositions. By convention, each time a variable X ap-
pears in a probabilistic formula ®(X), it should be un-
derstood as Vx; € X, ®(x;). For instance, given three
variables X, Y and Z, P(X®Y | Z®@n) =P(X | m)
stands for:

Vxie X,Vy; €Y,V €Z

[E3.1]
Px; Ayj | ze Am) =P(x; |)

Bayesian Robot Programming 51

3.2. Inference Postulates and Rules

This section presents the inference postulates and rules
necessary to carry out probabilistic reasoning.

3.2.1. Conjunction and Normalization Postulates for
Propositions. Probabilistic reasoning needs only two
basic rules:

1. The conjunction rule, which gives the probability
of a conjunction of propositions.

Panb|n)=Pa|n)xPb|anm)
[E3.2]
=Pb|n)xPla|bAm)
2. The normalization rule, which states that the sum
of the probabilities of a and —a is one.
Pa|n)+P(—a|m)=1 [E3.3]
For the purpose of this paper, we take these two rules
as postulates.*

As in logic, where the resolution principle
(Robinson, 1965, 1979) is sufficient to solve any infer-
ence problem, in discrete probabilities, these two rules
([E3.2], [E3.3]) are sufficient for any computation. In-
deed, we may derive all the other necessary inference
rules from those two, especially the rules concerning
variables:

1. Conjunction rule for variables:

PXQY|n)=PX | 7)) xPY | X ®m) [E3.4]
=PY |m)xPX|Y®mn)

2. Normalization rule for variables:

ZP(X |7) =1 [E3.5]
X

3. Marginalization rule for variables:

Y PX®Y|7)=PY |7) [E3.6]
X

3.3. Bayesian Programs

We define a Bayesian Program as a mean of specifying
afamily of probability distributions. Our goal is to show
that by using such a specification one can effectively
control a robot to perform complex tasks.

52 Lebeltel et al.

Pertinent Variables
Decomposition
o Preliminary Knowledge ())
Description Parametric Forms
Program Forms
Programs
Data (9)
Question

Figure 1. Structure of a Bayesian program.

The constituent elements of a Bayesian program are
presented in Fig. 1:

e A program is constructed from a description and a
question.

e A description is constructed from preliminary
knowledge and a data set.

e Preliminary knowledge is constructed from a set of
pertinent variables, a decomposition and a set of
forms.

e Forms are either parametric forms or Bayesian pro-
grams.

3.3.1. Description. The purpose of a description is
to specify an effective method to compute a joint
distribution on a set of variables {X', X2, ..., X"}
given a set of experimental data § and preliminary
knowledge m. This joint distribution is denoted as:
PX'®X*..®@X"|8Q®@m).

3.3.2. Preliminary Knowledge. To specify prelimi-
nary knowledge the programmer must undertake the
following:

1. Define the set of relevant variables {Xl, X2 ...,
X"} on which the joint distribution is defined.
2. Decompose the joint distribution: Given a partition

of {X!, X?,..., X"} into k subsets we define k vari-
ables L', ..., LFeach corresponding to one of these
subsets.

Each variable L! is obtained as the conjunction of
the variables {X'!, X2, ..} belonging to the subset
i. The conjunction rule [E3.4] leads to:

PX'®X’® ---X"|8§®mn)
=PL'|8§®@7)xPUL?|L'®5§Qm) x ---
xPLF|LF1'® - - QL*’QL'®8®@)
[E3.7]

Conditional independence hypotheses then allow
further simplifications. A conditional independence
hypothesis for variable L is defined by picking
some variables X/ among the variables appearing
in conjunction L' ' ® - - - ® L>® L', calling R’ the
conjunction of these chosen variables and setting:

PL|L7'® - - QL*’QL'®@5®n)

=P(L'|R"®§Q) [E3.8]
‘We then obtain:
PX'®X’® --@X"|5§®n)
=P(L'|5@n)xP(L? | R*?®8§Q)
<xP(LP | RPQS5Q@m) x -
xP(L* | R*®@ 5@) [E3.9]

Such a simplification of the joint distribution as a
product of simpler distributions is called a decom-
position.

3. Define the forms: Each distribution P(L' | R' ®
8 ®) appearing in the product is then associ-
ated with either a parametric form (i.e., a function
fu (L") or another Bayesian program. In general, u
is a vector of parameters that may depend on R or
§ or both. Learning takes place when some of these
parameters are computed using the data set §.

3.3.3. Question. Given a description (i.e., P(X' ®
X’®---® X" | 8§ ® m)), a question is obtained
by partitioning {X!, X?, ..., X"} into three sets: the
searched variables, the known variables and the un-
known variables.

We define the variables Search, Known and Un-
known as the conjunction of the variables belonging
to these sets. We define a question as the distribution:

P(Searched | Known ® § ®). [E3.10]

3.4. Running Bayesian Programs

Running a Bayesian program supposes two basic ca-
pabilities: Bayesian inference and decision-making.

3.4.1. Bayesian Inference. Given the joint distribu-
tionP(X'® X’ ® --- ® X" | § ® m), it is always pos-
sible to compute any possible question, using the fol-
lowing general inference:

P(Searched | Known ® § @ i)

= Z P(Searched ® Unknown | Known ® § ®)

Unknown

2 Unknown P(Searched ® Unknown ® Known | 8 ®)
- P(Known | § @ m)

_ > Unknown P(Searched ® Unknown ® Known | § ®)
T Y Searched Unknown P(Searched ® Unknown ® Known | 8 ®)

1
= 3 X Z P(Searched @ Unknown ® Known | § ®)

Unknown

k
x |:P(L1)XHP(Li|Ri)]

Unknown i=2

[E3.11]

M| =

where the first equality results from the marginalization
rule (Eq. [E3.6]), the second results from the product
rule (Eq. [E3.4]) and the third corresponds to a second
application of the marginalization rule. The denomina-
tor appears to be a normalization term. Consequently,
by convention, we will replace it by 2. Finally, the joint
distribution is replaced by its decomposition.

Two main problems have to be solved: searching the
modes in a high dimensional space, and marginalizing
in a high dimensional space.

Since Searched may be a conjunction of numerous
variables, each of them possibly having a lot of val-
ues or even being continuous, it is seldom possible to
exhaustively compute P(Searched | Known). One may
then decide either to build an approximate representa-
tion of this distribution or to directly sample from this
distribution. In both cases the challenge is to find the
modes where most of the probability density is concen-
trated. This may be very difficult, as most of the prob-
ability may be concentrated in very small sub-spaces
of the whole searched space.

The situation is even worse, as computing the value
of P(Searched | Known) for a given value of Searched
(a single point of the searched space of the preceed-
ing paragraph) is by itself a difficult problem. Indeed,

Bayesian Robot Programming 53

it supposes to marginalize the joint distribution on the
space defined by Unknown. Unknown (like Searched)
may be a conjunction of numerous variables, each of
them possibly having a lot of values or even being con-
tinuous. Consequently, the sum should also be either
approximated or sampled. The challenge is then to find
the modes of

[E3.12]

k
PLY) x [[P’ | R
i=2

(on the search space defined by Unknown), where most
of the probability density is concentrated and which
mostly contribute to the sum. Finally, marginalizing in
a high dimensional space appears to be a very similar
problem to searching the modes in a high dimensional
space.

It is well known that general Bayesian inference is
a very difficult problem, which may be practically in-
tractable. Exact inference has been proved to be NP-
hard (Cooper, 1990) and the general problem of ap-
proximate inference too (Dagum and Luby, 1993).

However, approximate inference is often tractable in
practical cases for three main reasons:

1. The conditional independencies, as expressed by the
decomposition of the joint distribution, break the
complexity of the problem by reducing drastically
the size of the searched space (see Section 6 for an
instance of that). The importance of the decompo-
sition has already been stressed by many authors
(e.g., Zhang and Poole, 1996) and explains mainly
the good performances of our engine (10 inferences
per second).

2. Some powerful symbolic simplifications can be
made before any numerical computation (see next
section on ProBT).

3. Numerical optimization and marginalization have
a long history and impressive numerical methods
have been developed which can be reused in this
context (see next section on ProBT).

3.4.2. ProBT: An API to Automate Bayesian In-
ference. An inference engine and the associated
programming API® (named PRoBT for Open Proba-
bilistic Language) has been developed and used for the
experiments presented in this paper and other industrial
applications.

PROBT proceeds in two phases: a symbolic simpli-
fication of the required computation followed by some
intensive numerical crunching.

54 Lebeltel et al.

The main goal of the simplification phase is to re-
duce the number of sums necessary to compute the
distribution:

P(Searched | Known)

1 £ i i
=5 > |:P(L1)><EP(L |R):| [E3.13]

Unknown

These kinds of simplification techniques are largely
used in the litterature. For instance, the well known
JLO or junction tree algorithm (Jensen, 1990) may be
seen as such a simplification technique in the case of
Bayesian Networks.

In ProBT, alarge spectrum of such simplifications is
used.

First, considering the different terms of the product
P(LY) x Hf:z P(L' | RY), three possibilities of obvious
simplifications may appear:

1. When a term is a uniform distribution it can be sim-
plified: it vanishes from the expression and its value
will implicitly be taken into account in the normal-
ization constant .

2. When a term is a distribution where all the variables
have Known values, then it is a constant for this
question and may also be simplified.

3. When a term is a distribution where all the vari-
ables are either Searched or Known, then it can be
factorized out of the sum.

After these three first steps, we get a new expression
of the form:

P(Searched | Known)

- % < [TP@/ 1R x []_[P(L" | R")]

fej Unknown |_ iel

[E3.14]

Now, considering > nownll Lic; P(LT | R)], we
can try to find an order on the sum to simplify terms
that sum to 1.

Indeed, when a term P (L' | R') appears in the sum,
if all the variables appearing in L' are part of Unknown
(summed) and if all the variables appearing in R’ are
either part of Known or Unknown, then P(L’ | R") sums
to 1 and vanishes out of the global sum. This operation
often leads to impressive simplifications.

Finally, the last simplification that can be made is to
reorder the sums on the different unknown variables in
order to minimize the number of operations to make.
ProBT uses the general distributive law algorithm to
do this. A description of this algorithm may be found
in a paper by Aji and McEliece (2000).

A more detailed description of this simplification
phase and of related work may be found in Bessiere’s
survey (Bessiere et al., 2003).

The main goal of the numerical crunching phase is to
estimate the distribution P(Searched | Known). A nec-
essary subgoal is to estimate the corresponding sum.

Two main approaches are possible to reach these ob-
jectives, either by building approximated explicit rep-
resentation of these distributions or by sampling these
distributions.

ProBT includes different algorithms related to both
approaches. It may approximate the distribution us-
ing either particle filters (Arulampalam et al., 2001)
or Multi Resolution Binary Trees (MRBT), a home-
made representation described in a pending patent
(Bessiere, 2002). ProBT also uses sampling techniques,
mainly Monte Carlo sampling integration methods
(Neal, 1993; MacKay, 1996) and an improved ver-
sion of these techniques proposed by Mekhnacha et al.
(2001), where they are combined with simulated an-
nealing.

3.4.3. Decision-Making. For a given distribution,
different decision policies are possible: for example,
searching the best (highest probability) values or draw-
ing atrandom according to the distribution. For our pur-
poses, we will always use this second policy and refer
to this query as: Draw(P (Searched | Known ® § Q@ m)).

Utility functions could also be used to make the de-
cision but they do not appear to be necessary for the
work described in this paper.

3.4.4. Control Loop of the Robot. To control our
robot using a Bayesian program, a decision is made
every tenth of a second. A typical question is to select
the values of the motor variables knowing the values of
the sensory variables. Consequently, the basic loop to
operate the robot is to loop on the following instructions
every tenth of a second:

1. Read the values of the sensors

. Draw(P (Motors | Sensors®@86Q))

3. Send the returned values to the
motors

[\)

4. Experimental Platform
4.1. Khepera Robot

Khepera is a two-wheeled mobile robot, 57 millimeters
in diameter and 29 millimeters in height, with a total
weight of 80 g (See Fig. 2). It was designed at EPFL’
and is commercialized by K-Team.®

The robot is equipped with eight light sensors (six in
front and two behind), taking values between 0 and 511
in inverse relation to light intensity, stored in variables
L1, ..., LS8 (see Fig. 3). These eight sensors can also
be used as infrared proximeters, taking values between
0 and 1023 in inverse relation to the distance from
the obstacle, stored in variables Px1, ..., Px8 (see
Fig. 3).

The robot is controlled by the rotation speeds of its
left and right wheels, stored in variables Mg and Md,
respectively.

From these 18 basic sensory and motor variables,
we derived three new sensory variables (Dir, Prox and
Thetal) and one new motor one (Vror). They are de-
scribed below.

LA
St Saenlyyg cpepenttt

ot | e (111

11

Figure 2. The Khepera mobile robot.

Bayesian Robot Programming 55

Dir=+10

Figure 3. The sensory-motor variables of the Khepera robot.

e Dir is a variable that approximately corresponds
to the bearing of the closest obstacle (see Fig. 3).
It takes values between —10 (obstacle to the left
of the robot) and +10 (obstacle to the right of the
robot), and is defined as follows:

Dir =
Floor <90(Px6 — Px1)+45(Px5 — Px2) 4+ 5(Px4 — Px3))
9(1 4+ Px1+ Px2+ Px3+ Px4 + Px5+ Px6)
[E4.1]

e Prox is a variable that approximately corresponds
to the proximity of the closest obstacle (See Fig. 3).
It takes values between zero (obstacle very far from
the robot) and 15 (obstacle very close to the robot),
and is defined as follows:

Prox =

Max(Px1, Px2, Px3, Px4, Px5, Px6)
Floor o

[E4.2]

e Thetal is a variable that approximately corresponds
to the bearing of the greatest source of illumination.
It takes on 36 values from —170° to 180°.

e The robot is piloted solely by its rotation speed (the
translation speed is fixed). It receives motor com-
mands from the Vrot variable, calculated from the
difference between the rotation speeds of the left
and right wheels. Vrot takes on values between +10
(fastest to the right) and —10 (fastest to the left).

Khepera accepts turrets on its top to augment either
its sensory or motor capacities. For the final experiment

56 Lebeltel et al.

(the nightwatchman task), a linear camera of 64 pixels
and a micro turbine were added on top of the robot.

4.2. Environment

For all experiments described in the current paper, the
Khepera is placed in a 1 m by 1 m environment. This
environment has walls around its contour, textured to
be easily seen by the robot. Inside this square, we place
walls made of Lego®© bricks that can be moved easily
to set any configuration we need quickly. We usually
build a recess made of high Lego®© walls in a corner, and
place a small light over this recess, to create a “base”
for the robot (see Fig. 12).

5. Reactive Behavior
5.1. Goal and Experimental Protocol

The goal of the first experiment was to teach the robot
how to push objects.

First, in a learning phase, we drove the robot with a
joystick to push objects. During that phase, the robot
collected, every tenth of a second, both the values of
its sensory variables and the values of its motor vari-
ables (determined by the joystick position). This data
set was then used to identify the free parameters of the
parametric forms.

Then, in a restitution phase, the robot has to repro-
duce the behavior it had just learned. Every tenth of
a second it decided the values of its motor variables,
knowing the values of its sensory variables and the in-
ternal representation of the task.

5.2. Specification

Having defined our goal, we describe the three steps
necessary to define the preliminary knowledge.

1. Choose the pertinent variables
2. Decompose the joint distribution
3. Define the parametric forms

5.2.1. Variables. First, the programmer specifies
which variables are pertinent for the task.

To push objects it is necessary to have an idea of
the position of the objects relative to the robot. The
front proximeters provide this information. However,
we chose to sum up the information of these six prox-
imeters by the two variables Dir and Prox.

We also chose to set the translation speed to a con-
stant and to operate the robot by its rotation speed Vrot.

These three variables are all we need to push obsta-
cles. Their definitions are summed up as follows:

Dir € {—10,...,10}, |[Dir] =21
Prox € {0, ..., 15}, | Prox] = 16
Vrot € {—10, ..., 10}, [Vrot] = 21

[S5.1]

5.2.2. Decomposition. In the second specification
step, we give a decomposition of the joint probability
P(Dir ® Prox ® Vrot| A ® m-obstacle) as a product of
simpler terms. This distribution is conditioned by both
m-obstacle, the preliminary knowledge we are defin-
ing, and A a data set that will be provided during the
learning phase.

P(Dir ® Prox ® Vrot | A ® m-obstacle)

= P(Dir | A ® mw-obstacle)
x P(Prox | Dir ® A ® mw-obstacle)
xP(Vrot | Prox @ Dir ® A ® m-obstacle)

= P(Dir | A ® m-obstacle)
xP(Prox | A ® m-obstacle)
x P(Vrot | Prox @ Dir ® A ® m-obstacle)

[S5.2]

The first equality results from the application of the
product rule (Eq. [E3.4]). The second results from the
simplification P(Prox | Dir @ w-obstacle) = P(Prox |
A ® m-obstacle), which means that we consider that
Prox and Dir are independent. The distances to the
objects and their bearings are not contingent.

5.2.3. Parametric Forms. To be able to compute the
joint distribution, we finally need to assign parametric
forms to each of the terms appearing in the decompo-
sition:

P(Dir | A ® m-obstacle) = Uniform

P(Prox | A ® m-obstacle) = Uniform

P(Vrot | Prox ® Dir ® A @ m-obstacle)

= G(u(Prox, Dir), o (Prox, Dir))

[S5.3]

We have no a priori information about the direction
and the distance of the obstacles. Hence, P(Dir| AQm-
obstacle) and P(Prox | A @ m-obstacle) are uniform
distributions; all directions and proximities have the
same probability.

For each sensory situation, we believe that there is
one and only one rotation speed that should be pre-
ferred. The distribution P(Vrot | Prox ® Dir @ A ® -
obstacle) is unimodal. However, depending of the situ-
ation, the decision to be made for Vrot may be more or
less certain. This is resumed by assigning a Gaussian
parametric form to P(Vrot | Prox @ Dir @ A ® -
obstacle).

5.3. Identification

We drive the robot with a joystick (see Movie 1°), and
collect a set of data A. Let us call the particular set of
data corresponding to this experiment §-push. A datum
collected at time ¢ is a triplet (vrot;, dir,, prox;).

The free parameters of the parametric forms (means
and standard deviations for all the | Dir| x | Prox| Gaus-
sians) can then be identified by computing the means
and standard deviations of Vrot for each position of the
obstacle.

Finally, it is possible to compute the joint
distribution:

P(Dir ® Prox @ Vrot | §-push Q@ m-obstacle)
= P(Dir | m-obstacle) x P(Prox | m-obstacle)
x P(Vrot | Prox @ Dir ® §-push @ m-obstacle)
[E5.1]

According to Eq. [E3.11], the robot can answer any
question concerning this joint distribution.

We call the distribution P(Dir ® Prox® Vrot |
8-push ® m-obstacle) a description of the task. A de-
scription is the result of identifying the free parame-
ters of a preliminary knowledge using some given data.
Hence, a description is completely defined by a couple
preliminary knowledge + data. That is why a conjunc-
tion § ® 7 always appears to the right of a description.

5.4. Utilization

To render the pushing obstacle behavior just learned,
the Bayesian controller is called every tenth of a second:

1. The sensors are read and the val-
ues of dir, and prox; are computed.

2. The Bayesian program is run with
the query:

Draw(P(Vrot | prox, ® dir, @ §-push
® m —obstacle)) [E5.2]

Bayesian Robot Programming 57

3. The drawn vrof; is sent to the mo-
tors.

5.5. Results, Lessons and Comments

5.5.1. Results. As shown in Movie 1,° the Khepera
learns how to push obstacles in 20 to 30 seconds. It
learns the particular dependency, corresponding to this
specific behavior, between the sensory variables Dir
and Prox and the motor variable Vrot.

This dependency is largely independent of the
particular characteristics of the objects (weight, color,
balance, nature, etc.). Therefore, as shown in Movie
2,10 the robot is also able to push different objects.
This, of course, is only true within certain limits. For
instance, the robot will not be able to push the object
if it is too heavy.

Lesson 1: A generic method for Bayesian Robot
Programming

In this experiment we apply a precise three-step method
to program the robot.

1. Specification: define the prelim-
inary knowledge.

1.1 Choose the pertinent vari-
ables.

1.2 Decompose the joint distribu-
tion.

1.3 Define the parametric forms.

2. Identification: identify the free
parameters of the preliminary
knowledge.

3. Utilization: ask a question to
the joint distribution.

In the sequel, we will use the very same method for
all the other BRP experiments.

Lesson 2: Bayesian Program = Preliminary
Knowledge + Data + Question

Numerous different behaviors may be obtained by
changing some of the different components of a
Bayesian program in the following ways.

e It is possible to change the question, keeping the
description unchanged. For instance, if the Prox in-
formation is no longer available because of some

58 Lebeltel et al.

Figure 4. Contour following (superposed images).

failure, the robot may still try to push the obstacles
knowing only their direction. The query is then:

Draw(P(Vrot | dir; @ §-push @ m-obstacle))
[E5.3]

e It is possible to change the data, keeping the
preliminary knowledge unchanged. For instance,
with the same preliminary knowledge w-obstacle,
we taught the robot to avoid objects or to follow
their contour (see Fig. 4 and Movie 3'!). Two new
descriptions'? were obtained by changing only the
driving of the robot during the learning phase. As
a result, two new programs were obtained leading
to the expected behaviors: “obstacle avoidance”
and “contour following.”

e Finally, it is possible to change the preliminary
knowledge, which leads to completely different
behaviors. Numerous examples will be presented in
the sequel of this paper. For instance, we taught the
robot another reactive behavior called phototaxy.
Its goal is then to move toward a light source.
This new preliminary knowledge m-phototaxyl
uses the variables Vrot and Thetal. Thetal roughly
corresponds to the direction of the light.

6. Sensor Fusion
6.1. Goal and Experimental Protocol
The goal of this experiment is to fuse the data orig-

inating from the eight light sensors to determine the
position of a light source.

This will be obtained in two steps. In the first one, we
specify one description for each sensor individually. In
the second one, we mix these eight descriptions to form
a global one.

6.2. Sensor Model
6.2.1. Specification.

6.2.1.1. Variables. Tobuildamodel of the light sensor
i, we only require two variables: Li the reading of the
ith sensor, and Theta?2, the bearing of the light source.

Lie{0,...,511}, |Li| =512

[S6.1]
Theta2 € {—170, ..., 180}, | Theta2] =36

6.2.1.2. Decomposition. 'The decomposition simply
specifies that the reading of a sensor obviously depends
on the position of the light source

P(Theta? @ Li | A ® w-sensor)
= P(Theta2 | w-sensor)
x P(Li | Theta2 ® A ® w-sensor) [S6.2]

6.2.1.3. Parametric Forms. As we have no a priori
information on the position of the source, we state:

P(Theta2 | m-sensor) = Uniform [S6.3]

The distribution P(Li| Theta2 ® A ® m-sensor) is
usually very easy to specify because it corresponds ex-
actly to the kind of information that the sensor supplier
provides: the expected readings of its device when ex-
posed to a light. For Khepera’s light sensors, we obtain
(see Fig. 5):

P(Li | Theta2 ® nt-sensor) = GK(Theta2.6,).0 (Li)

1
K(Theta2,6;) = 1 — 1 4+ e—4B(Theta2—6;|—<)

(¢ =45),(B=0.03) [S6.4]

In specification [S6.4], 6; stands for the position of
the sensor with respect to the robot, and will be used
later to “rotate” this model for different sensors.

Specifications [S6.1], [S6.2], [S6.3] and [S6.4] are
the preliminary knowledge corresponding to this sen-
sor model. This preliminary knowledge is named -
sensor.

K(Theta)
5684

46@-
38a-
2684

188

T ; T
-188 a 163
Theta2 (°)

a

Figure 5. K(Theta2, 0).

6.2.2. Identification. No identification is required as
there are no free parameters in -sensor.

However, it may be easy and interesting to calibrate
specifically each of the eight light sensors. This could
be achieved, for instance, by identifying parameters o
and B independently for each sensor, by observing the
response of the particular sensor to a light source.

6.3. Fusion
6.3.1. Specification.

6.3.1.1. Variables. The interesting variables are the
eight variables Li and Theta2:

L1el0,...,511}, [LI] =512

L8 e {0,...,511}, [L8] =512 [S6.5]
Theta2 € {—170, ..., 180}, | Theta2| = 36

6.3.1.2. Decomposition. The decomposition of the
joint distribution is chosen to be:

P(Theta2 @ LIQL2QL3I QL4 QL5 QL6
QL7 ® L8| A ® m-fusion)
= P(Theta2 | A ® m-fusion) x P(L1 | Theta2 ® A

Q m-fusion) x P(L2/L1 @ Theta2 ® A ® m-fusion)

X . ..XPWLS|L7QL6QLSQI4QL3Q L2
Q LI ® Theta2 @ A ® m-fusion)
= P(Theta2 | m-fusion)

8
X HP(Li | Theta2 @ A ® m-fusion)

i=1

The first equality results from the product rule
[E3.4]. The second from simplifications of the

[S6.6]

Bayesian Robot Programming 59

kind:

PLj|Lj—1® --- ® LI ®Theta2 ® A ® m-fusion)
= P(Lj | Theta2 @ A ® m-fusion) [E6.1]

These simplifications may seem peculiar as obvi-
ously the readings of the different light sensors are
not independent. The exact meaning of these equa-
tions is that we consider Theta2 (the position of the
light source) to be the main reason for the contingency
of the readings. Consequently, we state that, knowing
Theta?2, the readings Lj are independent. Theta? is the
cause of the readings and knowing the cause, the conse-
quences are independent. This is, indeed, a very strong
hypothesis. The sensors may be correlated for numer-
ous other reasons. For instance, ambient temperature
influences the functioning of any electronic device and
consequently correlates their responses. However, we
choose, as a first approximation, to disregard all these
other factors.

6.3.1.3. Parametric Forms.
priori information on Theta2:

We do not have any a

P(Theta2 | m-fusion) = Uniform [S6.7]

P(Li| Theta2 ® A ® m-fusion) is obtained from the
model of each sensor as specified in previous Sec-
tion (6.2):

P(Li | Theta2 @ A ® m-fusion)

= P(Li | Theta2 ® m-sensor) [S6.8]

6.3.2. Identification. As there are no free parameters
in -fusion, no identification is required.

6.3.3. Utilization. To find the position of the light
source the standard query is:

Draw(P(Theta2 | 11, ® - - - ® I8, ® m-fusion))
[E6.2]

This question may be easily answered using
Eq. [E3.11] and specification [S6.8]:

P(Theta2 |11, ® - - - ® I8, ® m-fusion)

| N
=5 X HP(ll, | Theta2 ® m-sensor) [E6.3]

i=1

60 Lebeltel et al.

Values drawn from this distribution may be effi-
ciently computed given that the distribution P(Theta2
|11, ® -+ ® I8, ® mw-fusion) is simply a product of
eight very simple ones, and given that the normalizing
constant ¥ does not need to be computed for a random
draw.

Many other interesting questions may be asked of
this description, as the following:

e It is possible to search for the position of the light
source knowing only the readings of a few sensors:
P(Theta2 | 11, ® 12, ® m-fusion)
1
=5 x P(l1; | Theta2 ® m-sensor)
x P(12; | Theta2 @ m-sensor) [E6.4]
e Itis possible to check whether the sensor i is out of

order. Indeed, if its reading /i, at time ¢, persists in
being inconsistent with the readings of the others for

some period, itis a good indication of a malfunction.
This inconsistency may be detected by a very low
probability for /i,:

Pl1; 112, ® --- ®I8; ® m-fusion)

1 8
== P(li; | Theta2 -
S X T%;Z,l:! (li; | Theta2 ® m-sensor)

[E6.5]

6.4. Results, Lessons and Comments

6.4.1. Results. Figure 6 presents the result obtained
for a light source with a bearing of 10°.

The eight peripheral figures present the distributions
P(Theta2 | Li ® w-sensor) corresponding to the eight
light sensors. The central schema presents the result of
the fusion, the distribution P(Theta2 | 11, ®---®18; ®
m-fusion). Even poor information coming from each
separate sensor may blend as a certainty.

L3 =171)
b P Theta? | L3 ® m-sensor)

80 90 -45

(L4=135)

. Theta? | L4 & m-sensor)

o o

(e

=3 -}
¢ b
tom

o
o
=1

S0 —a= O 4 o

(L2=422)
. P(Theta2 | L2 & m-sensor)

(L5 =280)
o P(Theta2 | L3 @ a-sensor)

5 Theta2 = 10)

Al

P(Theta? | LI® ...® L8 @ m-fusion)

0.37

o o

Q.75
050
(L1=306) (L6 =489)
150 P(Theta2 | L1 @ w-sensor) s 0.5 P(Theta | L6 ® m-sensor)
- o000 -] i I 1 0
:_ 180 -sp-2o 1D 50 9b 70 i
(L& =511) (L7=511)
o 5o P(Thetal | L8 @ m-sensor) o 50 P(Theta2 | L7 @ m-sensor)
7 037
25 0.25
12 0.12
-180 180 -90-35 0 45 80 170

Figure 6. The result of a sensor fusion for a light source with a bearing of 10°.

Lesson 3: Breaking the complexity using
conditional independencies

The conditional independencies hypothesis which per-
mits to transform:

P(Theta2 @ LI Q L2Q L3 QL4 QL5 QL6
QL7 ® L8| A ® m-fusion) [E6.6]

into:

8
P(Theta? | m-fusion) x [[P(Li | Theta2
t=1
® A ® m-fusion) [E6.7]
is the main tool at hand to simplify the treated prob-
lem. More than any clever inference algorithm they
are the essential way to keep computation tractable.
For instance, here the size of the search space for the
joint distribution [E6.7] is 36 x 5128 o 27, when the
size of the search space for the decomposition [E6.7]
is 36 x (512 x 36) x 8 o 222.

Lesson 4: Calling Bayesian subroutines

Specification [S6.8]: P(Li | Theta2 @ A ® w-fusion) =
P(Li | Theta? ® m-sensor), where a distribution ap-
pearing in a decomposition is defined by a question to
another Bayesian program, may be seen as the prob-
abilistic anologous to subroutine calls in regular pro-
gramming.

This Bayesian subroutine call mechanism will
play the same role than the usual one: allowing to
build complex Bayesian programs as hierarchies of
embedded calls to simpler and simpler Bayesian
programming building blocks. Section 10 will present
a more complex instance of this.

Lesson 5: Sensor fusion method

In the experiment just presented, we have seen a simple
instance of a general method to carry out data fusion.

The key point of this method is in the decomposi-
tion of the joint distribution, which has been consid-
erably simplified under the hypothesis that “knowing
the cause, the consequences are independent”. This is
a very strong hypothesis, although it may be assumed
in numerous cases.

Bayesian Robot Programming 61

This way of doing sensor fusion is very efficient. Its
advantages are manifold.

The signal is heightened.

It is robust to a malfunction of one of the sensors.

It provides precise information even with poor sen-
SOrS.

It leads to simple and very efficient computations.

We presented this method on a very simple case
for didactic purposes. However, it is a very popular
technique to do sensor fusion which can be used for
much more complicated cases in a large variety of
applications. For instance, we used refinement of this
technique for ADAS (Advanced Driver Assistance
System) to merge information coming from two radars
and one lidar in order to partially automate car driving
(Coué et al., 2002, 2003).

Lesson 6: No inverse and no ill-posed problems
in the probabilistic framework

In this experiment, another fundamental advantage of
Bayesian programming is clearly evident. The descrip-
tion is neither a direct nor an inverse model. Mathemat-
ically, all variables appearing in a joint distribution play
exactly the same role. This is why any question may be
asked of a description. Consequently one may define
the description in one way (P(Li | Theta2)) and ques-
tion it in the opposite way (P(Theta2 | I1, Q- - - ®I8,)).
In theory, any inverse problem may be solved when ex-
pressed in a probabilistic framework. In practice some
of these inverse problems may require a lot of compu-
tational resources. However, this is a major difference
with non probabilistic modeling where inverse problem
may only be solved in rare cases.

Furthermore, there is none ill-posed problem in a
probabilistic framework. If a question may have sev-
eral solutions, the probabilistic answer will simply have
several peaks.

7. Behavior Combination
7.1. Goal and Experimental Protocol

In this experiment we want the robot to go back to its
base where it can recharge.

This will be obtained with no further teaching. As
the robot’s base is lit, the light gradient usually gives

62 Lebeltel et al.

good hints on its direction. Consequently, we will ob-
tain the homing behavior by combining together the
obstacle avoidance behavior and the phototaxy behav-
ior. By programming this behavior we will illustrate
one possible way to combine Bayesian programs that
make use of a “command variable.”

7.2. Specification

7.2.1. Variables. We need Dir, Prox, Thetal and Vrot,
the four variables already used in the two composed
behaviors. We also need a new variable H which acts
as a command to switch from avoidance to phototaxy.

Dire{—10,...,10}, | Dir] =21
Proxe {0, ..., 15}, |Prox] = 16
Thetal € {—170, ..., 180}, | Thetal | = 36
Vrot € {—10, ..., 10}, |Vrot] = 21
H e {avoidance, phototaxy}, |H] = 2

[S7.1]

7.2.2. Decomposition. We believe that the sensory
variables Dir, Prox and Thetal are independent from
one another. Far from any objects, we want the robot to
go toward the light. Very close to obstacles, we want the
robot to avoid them. Hence, we consider that H should
only depend on Prox. Finally, we believe that Vrot must
depend on the other four variables. These programmer
choices lead to the following decomposition:

P(Dir ® Prox ® Thetal ® H ® Vrot | A ® w-home)
= P(Dir | m-home) x P(Prox | m-home)
X P(Thetal | m-home) x P(H | Prox @ m-home)
x P(Vrot | Dir @ Prox @ Thetal ® H ® mw-home)
[S7.2]

7.2.3. Parametric Forms. We have no a priori infor-
mation about either the direction and distance of objects
or the direction of the light source. Consequently, we
State:

P(Dir | m-home) = Uniform
P(Prox | w-home) = Uniform [S7.3]

P(Thetal | m-home) = Uniform
H is a command variable to switch from avoidance

to phototaxy. This means that when H = avoidance the
robot should behave as it learned to do in the description

P(Dir ® Prox® Vrot | §-avoid ® m-obstacle) and when
H = phototaxy the robot should behave according to
the description P(Thetal ® Vrot | 8-phototaxy @ m-
phototaxyl). Therefore, we state:

P(Vrot | Dir ® Prox ® Thetal ® avoidance ® w-home)
= P(Vrot | Dir @ Prox ® §-avoid Q m-obstacle)
P(Vrot | Dir ® Prox ® Thetal ® phototaxy ® mw-home)
= P(Vrot | Thetal @ 6-phototaxy ® m-phototaxyl)

[S7.4]

We want a smooth transition from phototaxy to
avoidance as we move closer and closer to objects.
Hence, we finally state:

P(avoidance | Prox @ m-home)
= Sigmoida’ﬁ(Prox) (x=9),(B=0,25
P(phototaxy | Prox ® m-home)

= 1 — P(avoidance | Prox ® m-home)

[S7.5]

The discrete approximation of the Sigmoid function
we use above, which will not be defined in the current
paper, is shown in Fig. 7.

The preliminary knowledge m-home is defined by
specifications [S7.1], [S7.2], [S7.3], [S7.4] and [S7.5].

7.3. Identification

There are no free parameters in preliminary knowledge
m-home. No learning is required.

P(avoidance | Prox & m-home)
1.00

0.00 mﬁ

012 3 456 7 8

Prox

Figure 7. P(avoidance | Prox @ w-home).

7.4. Utilization

While Khepera returns to its base, we do not know
in advance when it should avoid obstacles or when it
should go toward the light. Consequently, to render the
homing behavior we will use the following question
where H is unknown:

P(Vrot | Dir ® Prox ® Thetal ® mw-home)
= Z P(Vrot @ H | Dir @ Prox ® Thetal @ w-home)
H

[P(avoidance | Prox @ m-home)
x P(Vrot | Dir ® Prox ® §-avoid
1 ® m-obstacle)]

z x + [P(phototaxy | Prox @ m-home)
x P(Vrot | Thetal ® §-phototaxy
® m-phototaxyl)]

[E7.1]

Equation [E7.1] shows that the robot does a weighted
combination between avoidance and phototaxy. Far
from any objects (prox = 0, P(phototaxy | prox ®
mw-home) = 1) it does pure phototaxy. Very close to
objects (prox = 15, P(avoidance | prox @ mw-home) =
1) it does pure avoidance. In between, it mixes
the two.

7.5. Results, Lessons and Comments

7.5.1. Results. Figure 8 and Movie 4'° show efficient
homing behavior obtained this way.

Figures 9 and 10 present the probability distributions
obtained when the robot must avoid an obstacle on the
left with a light source also on the left. As the object is
on the left, the robot needs to turn right to avoid it. This
is what happens when the robot is close to the objects
(see Fig. 9). However, when the robot is further from
the object, the presence of the light source on the left
influences the way the robot avoids obstacles. In that
case, the robot may turn left despite the presence of the
obstacle (see Fig. 10).

Lesson 7: A probabilistic if-then-else

In this experiment we present a simple instance of a
general method to combine descriptions to obtain a
new mixed behavior. This method uses a command

Bayesian Robot Programming 63

Figure 8. Homing behavior (The arrow points out the light source)
(superposed images).

variable H to switch from one of the composing be-
haviors to another. A probability distribution on H
knowing some sensory variables should then be spec-
ified or learned.'* The new description is finally used
by asking questions where H is unknown. The re-
sulting sum on the different cases of H does the
mixing.

This shows that Bayesian robot programming allows
easy, clear and rigorous specifications of such combina-
tions. This seems to be an important benefit compared
to some other methods that have great difficulties in
mixing behaviors with one another, such as Brooks’
subsumption architecture (Brooks, 1986; Maes, 1989)
or neural networks.

Description combination appears to naturally im-
plement a mechanism similar to HME'> (Jordan and
Jacobs, 1994) and is also closely related to mix-
ture models (see McLachlan and Deep, 2000 for
a reference document about mixture models and
see Bessiere et al., 2003 for details about the re-
lation between description combination and mixture
models).

64 Lebeltel et al.

(Dir = -5, Prox = 10, Lum = -90)

P(Vrot | Thetal ® dphototaxy & mphototaxyl) P(¥rot | Dir @ Prox ® d-aveid ® m-obstacle)
0.80 0.80
0.60 0.60
0.40 0.40
0.200 0.20
900 I I 1] I 900 I I I 1]
-10 -5 0 5 10 -10 -5 0 5 10
P(H| Prox @ a-home) P(Vrot | Dir ® Prox ® Thetal @ a-home)
1.00_ 0.80
0.75 0.60
0.50 L 0.40
0.25 L 0.20
0.00 0.00 _ﬁ:ﬂg_ [I
T Yavoidance ! ! T
phototaxy -10 -5 0 5 10

Figure 9. Homing behavior (Khepera close to an object on its left and has also the light source on its left). The top left distribution shows
the knowledge on Vrot given by the phototaxy description; the top right is Vrot given by the avoidance description; the bottom left shows the
knowledge of the “command variable” H; finally the bottom right shows the resulting combination on Vrot.

(Dir = -5, Prox = 8, Lum = -90)

P(Vrot | Thetal & d-phototaxy & a-phototaxy) P(Vrot | Dir @ Prox & é-avoid ® m-obstacle)
0.80 0.80
0.60 0.60
0.40 0.40]
0.20 e 0.20
0.00 I1-?|—|—I' 0. 0017 T T I T
I | I I I I | I I I
-10 =B 0 =1 10 -10 - 0 5 10
P | Prox @ m-home) P(Vrot | Dir ® Prox® Thetal & m-home)
1.00_ 0.80
0.75 0.60
0.50] 0.40
0.25 | 0.20
o.ooldb] 0. U”-#ﬂ:[b"ﬂ—i—il‘?—t—
Bltal e -10 -5 0 5 10

Figure 10. Homing behavior (Khepera further from the object on its left). This figure is structured as Fig. 9.

Finally, from a programming point of view, descrip- is known with some uncertainty through a probabil-
tion combination can be seen as a probabilistic if- ity distribution then the two possible consequences are
then-else. H is the condition. If H is known with cer- automatically mixed using weights proportional to this

tainty then we have a usual branching structure. If H distribution.

8. Situation Recognition
8.1. Goal and Experimental Protocol

The goal of this experiment is to distinguish different
objects from one another.

At the beginning of the experiment the robot does not
know any object (see below for a precise definition). It
must incrementally build categories for the objects it
encounters. When it knows n of them, the robot must
decide if a presented object enters in one of the n cat-
egories or if it is something new. If it is a new object,
the robot must create a new category and should start
to learn it.

8.2. Specification

8.2.1. Variables. Khepera does not use its camera for
this task. It must “grope” for the object. It uses the
“contour following” behavior to do so (see Fig. 4). It
does a tour of the presented object and computes at
the end of this tour four new variables: NIf the number
of left turns, Nrt the number of right turns, Per the
perimeter and Lzl the longest straight line. The values
of these variables are not completely determined by the
shape of the object, given that the contour following
behavior is quite choppy.

We also require a variable O to identify the different
classes of object. The value O = 0 is reserved for the
class of unknown (i.e., not yet presented) objects.

Finally, we obtain:

Nit € {0, ..., 24}, |NIt] =25

Nrt € {0, ..., 24}, |Nrt] =25

Per € {0, ...,9999}, [Per| = 10000 [S8.1]
Lri € {0, ...,999}, | Lri| = 1000
0¢el0,...,15,,10] = 16

8.2.2. Decomposition. Obviously, the four variables
NIt, Nrt, Per and Lrl are not independent of one another.
However, by a reasoning similar to the sensor fusion
case (see Section 6), we consider that knowing the ob-
ject O, they are independent. Indeed, if the object is
known, its perimeter or the number of turns necessary
to complete a tour are also known. This leads to the
following decomposition:

P(O @ Nlt ® Nrt @ Per @ Lrl | A @ w-object)
= P(O | m-object) x P(Nlt | O ® A ® mw-object)

Bayesian Robot Programming 65

x P(Nrt | O ® A ® m-object)
X P(Per | O ® A ® m-object)
x P(Lrl | O ® A ® mw-object) [S8.2]

8.2.3. Parametric Forms. We have no a priori infor-
mation on the presented object:

P(O | m-object) = Uniform [S8.3]

For an already observed object (O # 0), we state that
the distributions on NIt and Nrl are Laplace succession
laws!® and that the distributions on Per and Lrl are
Gaussian laws:

Yo, € O, 0; # 0y
P(NIt | 0; ® A ® mw-object) =L (ny;(0;))
P(Nrt | 0; ® A ® mw-object) =Lo(nyy(0;)) [S8.4]
P(Per | 0; ® A ® w-object) = G(u(o;), o(0;))
P(Lrl| 0; ® A ® w-object) = Go(u(0:), 0(0;))
Finally, we state that for a new object (O = 0) we

have no a priori information about Nit, Nrt, Per and
Lrl:

P(Nit | o9 ® m-object) = Uniform
P(Nrt | 09 ® m-object) = Uniform
P(Per | 09 @ w-object) = Uniform
P(Lrl | 09 ® m-object) = Uniform

[S8.5]

The preliminary knowledge composed of specifica-
tions [S8.1], [S8.2], [S8.3], [S8.4] and [S8.5] is named
mw-object.

8.3. Identification

When an object is presented to the robot, if it is rec-
ognized as a member of a class o;, the parameters of
the two Laplace succession laws and the two Gaussian
laws corresponding to this class are updated.

If the object is considered by Khepera to be a new
one, then a new class is created and the parameters of
the distributions are initialized with the values of NIt,
Nrt, Per and Lrl just read.

The learning process is incremental. Contrary to
what we have seen up to this point, the identifica-
tion and utilization phases are not separated. Each
new experience changes the set of data A, and leads
to a new description P(O ® Nit ® Nrt Q Per Q Lrl |
Sn ® mw-object).

66 Lebeltel et al.

Figure 11. The different objects presented to Khepera.
8.4. Utilization

After n—1 experiences, to recognize a presented object,
the question to answer is:

P(O | nlt, ® nrt, @ per, ® Irl, ® §,_1 ® mw-object)
[E8.1]

This may be simply computed by:

P(O | Nit ® Nrt @ Per @ Lrl ® 6,_1 ® m-object)
1
=5 X P(Nlt | O ® §,,_1 ® w-object)

Figure 12. The night watchman task.

xP(Nrt| O ® 8,1 ® w-object)
X P(Per | O ® §,—1 @ mw-object)
xP(Lrl| O ® §,_1 @ mw-object) [E8.2]

If the most probable value for O is zero, then Khep-
era assumes that it is facing a new object. Otherwise,
this most probable value is considered to correspond to
the recognized object.

8.5. Results, Lessons and Comments

8.5.1. Results. 'The 15 objects shown on Fig. 11 have
been presented to the robot, five times each, in ran-
dom order. Each time the question was as follows: “Do
you know this object, or is it a new one?” mathemat-
icaly stated as P(O | nlt, ® nrt, @ per, ® Irl, ®
8,—1 ® m-object). The obtained results are presented
on Table 1.

It should be first noticed that two objects (top right
of Fig. 11, 3 and 7 in the order of first presentation)
have the exact same square basis and thus may not be
distinguished from one another given the four chosen
variables. In these 2 cases, Khepera was in the position
of someone asked to identify the color of an object by
groping it.

The robot did not ever fail to recognize novelty (col-
umn 1) but for the first presentation of object 7 which
was recognized as object 3.

Blowing

Bayesian Robot Programming 67

Table 1. Situation Recognition. The columns correspond to the “really” presented objects.
The first column (F) corresponds to the first presentation of an object and the lines to the

recognize objects.

F 1 2 3 4 5 6

8§ 9 10 11 12 13 14 15

14

O 0 N AN R WD = O
~

O VU GG
wm R WD = O

At the second presentation of each object the
robot recognized the object except for object 7 which
was always identified as 3 and but once for object
12 (the wood pyramid) which was also recognized
as 3.

Lesson 8: Categorization

The main lesson to retain from this experiment is that
categorization of objects or situations may be consid-
ered as developing some specific sensor. Indeed, the
method used in this section for object recognition is
very similar to what was achieved for sensor fusion in
Section 6. The hypotheses are similar and the advan-
tages are the same.

9. Temporal Sequences
9.1. Goal and Experimental Protocol

In this section, to exemplify the Bayesian programming
method, we choose a “night watchman task”. This may
be obtained as temporal sequences of six simpler be-
haviors:

1. Idle: The robot is at its base, recharging its batteries.
It waits for both an order and enough energy to leave.

2. Patrol: Tt wanders around its environment and
sounds an alarm if it detects any movement.

3. Recognition: The robot tours object to identify them.

4. Fire-intervention: Khepera tries to extinguish fires
by blowing on them using its micro-turbine.

5. Homing: It goes to its base when ordered to do so.

6. Recharge: When low on energy, it goes to its base
to recharge.

The purpose of this section is to show how such
temporal sequences may be specified in the Bayesian
framework.

9.2. Specification

9.2.1. Variables. The first variable to consider is
Behavior, which may take the six preceding values
idle, patrol, recognition, fire-intervention, homing and
recharge. This variable will be used to select a given
behavior.

This selection will be made according to the values
of the six following variables:

e Vigil: a binary variable, used to order the Khepera to
work.

68 Lebeltel et al.

e FEnergy: avariable that measures the level of available
energy. Energy may take four different values: very-
high, high, low and very-low.

e Base: abinary variable, true if the robot is at its base.

e Fire: a binary variable, true if the robot detects any
fire.

e Identify: a binary variable, used to order Khepera to
recognize an object.

e Finally, Behavior_t-1 a variable taking the same six
values as Behavior, used to memorize which behav-
ior was selected at time # — 1.

This may be summed up as usual:

Behavior € {idle, patrol, recognition,
fire-intervention, homing,
recharge}, | Behavior] = 6
Vigil € {true, false}, | Vigil] = 2
Energy € {very-high, high, low,
very-low}, |Energy| =4 [S9.1]
Base € {true, false}, | Base| =2
Fire € {true, false}, | Fire| =2
Identify € {true, false}, | Identify| = 2
Behavior_t-1 € {idle, patrol, . .., recharge},
|Behavior_t-1] =6
9.2.2. Decomposition. At each time step the robot

will select a behavior knowing the values of these six
variables by answering the question:

P(Behavior | Vigil ® Energy ® Base ® Fire
® Identify @ Behavior_t-1 ® mw-behavior) [E9.1]

It is tempting to specify this distribution directly.
It would correspond to the usual programming method
where the conditions at time ¢ — 1 establish what should
be done at time 7.

We propose to do the exact opposite. Indeed, it is
quite easy, knowing the behavior, to have some notion
of the possible values of the variables Vigil, Energy,
Base, Fire, and Identify. For instance, if the Khepera is
patrolling, it means that it has been necessarily ordered
to do so and that Vigil is true. Furthermore, we consider
that knowing the behavior, these five variables are in-
dependent. These assumptions lead to the following
decomposition:

P(Behavior ® Vigil ® Energy & Base ® Fire

® Identify @ Behavior_t-1 | m-behavior)
= P(Behavior_t-1 | m-behavior)

x P(Behavior | Behavior_t-1 @ w-behavior)
x P(Vigil | Behavior Q@ w-behavior)
x P(Energy | Behavior @ mw-behavior)
x P(Base | Behavior @ m-behavior)
x P(Fire | Behavior @ m-behavior)
x P(Identify | Behavior ® m-behavior) [S9.2]

9.2.3. Parametric Forms. First we choose a uniform
a priori value for P(Behavior_t-1 | m-behavior):

P(Behavior_t-1 | w-behavior) = Uniform [S9.3]

We chose to specify all the other terms of this
decomposition as discrete distributions. Their differ-
ent values will be given a priori, one by one, using
tables.

For instance, P(Behavior |
m-behavior) is specified by Table 2.

This table should be read by column. Each column
corresponds to the probability of Behavior knowing
a certain behavior of the robot at time + — 1. Conse-
quently, each column should sum to 1 to respect the
normalization constraint.

Behavior_t-1 ®

Table 2. P(Behavior | Behavior_t-1 ® mw-behavior).

Behavior/

Behavior_t-1 idle patrol recognition fire-interv. homing recharge
idle 0.9 X 0 X X
patrol X 0.9 X X X
recognition 0 X 0.99 0 X X
fire-interv. X X X X X
homing 0 X 0 0.9 X
recharge 0 X X X 0.9

Table 3. P(Vigil | Behavior ® m-behavior).

Vigil/

Behavior idle patrol recognition fire-interv. homing recharge
false 0.9 0 0 X 1

true 0.1 1 1 X 0 X

For instance, the first column of Table 2 specifies the
probabilities of the variable Behavior knowing that the
behavior of the robot at time ¢ — 1 was idle. If Khepera
was idle, then it may stay idle with a high probability
(90%), it may not directly change its behavior to either
recognition, homing or recharge (probability 0), it may
switch to patrol or fire-intervention with a low prob-
ability (0.05 for both cases obtained by normalization
as specified by the “x”).

If Khepera was in mode patrol (second column), the
most probable behavior is that it stays in this mode,
although it can switch to any other one. If Khepera
was in mode recognition (third column) we set a very
high probability for it to stay in this mode because we
do not want it to be easily distracted from this task
and we preclude any possibility of switching to idle.
In mode fire-intervention (column 4) we exclude any
switch to idle, recognition or homing. Finally, when in
mode homing or recharge, the most probable behav-
ior is to stay in the current mode, although nothing is
definitely excluded.

Table 3 mainly says that patrol and recognition sup-
pose that Vigil is true and that homing supposes that
Vigil is false. When idle the probability that Vigil is
true is not 0, because Khepera may be idle to recharge
its batteries even when ordered to work.

Table 4 specifies that when idle it is more probable
that Energy is low than high. It also says that patrol
and recognition suppose a high Energy and recharge
the opposite.

Table 5 says that idle imposes that Base is true, when
patrol, recognition, homing and recharge suppose with
a high probability that Khepera is not at its base.

Table 4. P(Energy | Behavior @ m-behavior).

Energy/
Behavior idle patrol recognition fire-interv. homing recharge

very-low 0325 0 0 X X 0.8
low 0325 0.1 0.1 X X 0.2
high 0.25 X X X X
very-high 0.1 X X X X

Bayesian Robot Programming 69

Table 5. P(Base | Behavior ® m-behavior).

Base/
Behavior idle patrol recognition fire-interv. homing recharge

false 0 099 0.99 X 0.99 0.99
true 1 001 0.01 x 0.01 0.01

Table 6. P(Fire | Behavior ® m-behavior).

Fire/
Behavior idle patrol recognition fire-interv. homing recharge

false 1 1 1 0
true 0 0 0 1 0 0

Table 7. P(Identify | Behavior ® mw-behavior).

Identify/

Behavior idle patrol recognition fire-interv. homing recharge
false X X 0 X X X
true X X 1 X X X

Table 6 means that when Khepera is facing a fire, it
is necessarily in mode fire-intervention.

Finally, Table 7 says recognition imposes that Khep-
era has been ordered to do so (Identify is true).

9.3. Identification

No identification is required, as there are no free pa-
rameters in 7 -behavior.

9.4. Utilization

The robot chooses its behavior with the following
query:

Draw(P(Behavior | Vigil ® Energy @ Base ® Fire
® Identify @ Behavior_t-1 ® mw-behavior))
[E9.1]

that can be easily computed:

P(Behavior | Vigil ® Energy @ Base ® Fire
® Identify @ Behavior_t-1 ® w-behavior)

1
=5 x P(Behavior_t-1 | w-behavior)

70 Lebeltel et al.

x P(Behavior | Behavior_t-1 ® mw-behavior)
x P(Vigil | Behavior @ m-behavior)

x P(Energy | Behavior ® m-behavior)

x P(Base | Behavior ® m-behavior)

x P(Fire | Behavior ® m-behavior)

x P(Identify | Behavior @ mw-behavior) [E9.2]

9.5. Results, Lessons and Comments

9.5.1. Results. Using these techniques, Khepera ob-
tains temporal sequences of behaviors that appear con-
vincing to a human observer (an instance of such a
sequence will be given in the next section, see Movie
517).

For instance, these sequences are stable. Khepera
does not behave like a weathercock that changes its
mind every second.

Lesson 9: Inverse programming

This experiment demonstrates a completely new
method of specifying temporal sequences of tasks that
could be called “inverse temporal programming.” In-
deed, the programmer does not specify, as usual, the
necessary conditions for an action. On the contrary,
he or she specifies for each action the expected ob-
servations and assumes that knowing the action these
observations are independent.

Inverse programming presents two main advantages.

e It is robust to unforeseen situations. A sequence of
actions is always produced, even in cases that the
programmer did not explicitly take into account.

e Due to the conditional independence assumption, the
number of cases to take into account grows only lin-
early with the number of conditioning variables.

The a priori specification of the probability distribu-
tions of the observed variables knowing the behavior
may be adifficulty. However, it is possible to learn these
distributions (see Diard and Lebeltel, 1999).

Furthermore, the stability of the behavior according
to the values in the tables is a critical question. We
do not have yet any quantified results to answer this
question but we are trying to set up an experimental
protocol to evaluate it.

10. Integration: A Night Watchman Task
10.1. Goal and Experimental Protocol

The practical goal and experimental protocol of the
night watchman task has already been presented in
Section 9.1.

The scientific purpose of this last experiment is to
prove that Bayesian robot programming is an efficient
constructive methodology and that all the previous de-
scriptions may be integrated into a single synthetic one.

Three descriptions and a few corresponding vari-
ables necessary for the night watchman task have not
yet been presented to keep the paper short:

1. P(Base®@PxI®-- - QPx8QLI®---QLS8 | m-base)
used by Khepera to decide if it is at its base.

2. P(Move ® Behavior @ Move_t-1 ® Tempo ® Tour |
m-move) another temporal sequencing description
required because some of the behaviors are succes-
sions of reactive movements.

3. P(Vrot ® Vtrans ® Move @ H ® Dir ® Prox®
DirL ® ProxL ® Virans_.c ® Theta2 |m-speed)
built on the reactive behaviors to finally decide the
rotation and translation speeds.

10.2. Specification

10.2.1. Variables. The nightwatchman task requires
41 variables.

e Thirty-three “sensory” variables that Khepera may
read every tenth of a second. When convenient, we
will summarize these 33 variables by their conjunc-
tion (a variable named Sensory-variables).

Sensory-variables
=PxI® - QP8QLIQ ---Q LS8
® Vigil ® Energy Fire
® Identify @ Behavior_t-1
® Move_t-1 ® Tempo ® Tour ® Dir
& Prox @ DirL @ ProxL @ Vtrans_c
Q NIt @ Nrt ® Per ® Lrl

[E10.1]

e Five internal variables: Base, Theta2, Behavior,
Move, H.

e Three “motor” variables that Khepera must compute.
These three variables are the rotation speed Vrot,
the translation speed Vtrans and the identity of the
object O.

10.2.2. Decomposition and Parametric Forms. The
decomposition of the joint distribution on these 41 vari-
ables is a product of a uniform distribution on the sen-
sory variables (P(Sensory-variables | m-watchman))
and eight questions addressed to the previously defined
descriptions:

P(Vrot ® Virans ® O | Sensory-variables ® w-watchman)

1
= = x P(O | Nit ® Nrt @ Per ® Lrl ® m-object)

Bayesian Robot Programming 71

“What order should be sent to the motors, knowing
the sensory state, and ignoring the values of the internal
variables?”

The answer to that question is obtained, as usual, by
summing over the five ignored variables. This leads to
the following result:

P(Move | Behavior @ - - - ® Tour @ mw-move)

Behavior
X Base

Move Theta2 H
x P(H | Prox ® m-home)

x P(Vrot ® Vtrans | Move ®

Z P(Behavior | Vigil ® - - - ® Behavior_t-1 @ w-behavior)
X
X P(Base | PxI ® --- @ L8 ® mw-base)
X P(Theta2 | LI ® --- ® L8 ® m-fusion)

Sensory-variables

P | Base ® Theta2 ® Behavior ® Move ® H | w-watchman

Vrot ® Vtrans @ O
= P(Sensory-variables | w-watchman)
x P(Base | Px]1 @ ---QPx8QLI® --- ® L8 ® m-base)
X P(Theta2 | LI ® L2Q L3 ® L4 Q@ L5 ® L6
®L7 ® L8 ® m-fusion)
x P(Behavior | Vigil ® Energy ® Base ® Fire
® Identify @ Behavior_t-1 @ w-behavior)
x P(Move | Behavior @ Move_t-1 @ Tempo
® Tour @ mw-move)
x P(H | Prox ® m-home)
x P(Vrot @ Vtrans | Move ® H ® Dir @ Prox ® DirL
® ProxL @ Vtrans_c ® Theta? ® m-speed)

x P(O | NIt @ Nrt @ Per @ Lrl ® m-object) [E10.2]

10.3. Identification
No identification is required.
10.4. Utilization

The ultimate question that Khepera must answer is:

P(Vrot ® Vtrans
® O | Sensory-variables @ mw-watchman) [E10.3]

[E10.4]

-+ Q Theta2 ® m-speed)

This expression may seem complex. In fact, it ex-
actly reflects the structure of the reasoning required to
solve the problem.

e Recognizing the object is independent of Khepera
control.

e The innermost sum searches the Behavior ignoring
Base

P(Behavior | Vigil ® - - - ® Behavior_t-1
® m-behavior)x P(Base | Px1

Base ® -+ ® L8 ® m-base)

= P(Behavior | Vigil ® - - - ® Behavior_t-1
QRPxI® - QL8 ® m-watchman) [E10.5]

e The intermediary sum searches the movement ignor-
ing the Behavior and Base.

e The position of the light source (Theta2) is estimated
by the fusion of the light sensors information.

e The command variable H is estimated according to
the value of Prox.

e The outermost sum searches for Vrot and Vtrans
ignoring the precise values of the five internal
variables.

No decision is made except the ultimate one about
Vrot and Vtrans. Uncertainty is propagated from the
innermost level to the outermost. All the available in-
formation is taken into account. The resulting observed

72 Lebeltel et al.

robot behavior is, indeed, a probabilistic mixture of the
different component descriptions.

Discarding no information has an obvious compu-
tational cost. The evaluation of the three levels of cas-
cading sums may be very time consuming. Thus, the
programmer may choose to make decisions on any in-
termediary variables. This choice will always trade a
gain of efficiency for aloss of information. For instance,
the most efficient possible program would make a de-
cision for all the internal variables:

1. Draw(P(Base | PxI®---QL8Qm-base)) to de-
cide if the robot is at its base,

2. Draw(P(Behavior | - - -QBase®- - -Qm-behavior))
to decide the Behavior knowing Base,

3. Draw(P(Move | Behavior ® --- ® m-move)) to
choose a movement knowing the Beha-
vior,

4. Draw(P(Theta2 | LI ® --- ® L8 ® m-fusion)) to
decide the position of the light
source,

5. Draw(P(H | Prox ® m-home)) to decide be-
tween avoidance and phototaxy,

6. and finally, Draw(P(Vrot® Vtrans | ...Qm-speed))
to control the robot.

10.5. Results, Lessons and Comments

The results obtained are satisfactory to a human ob-
server. Khepera performed this task hundreds of time
in various environments and conditions. The behav-
ior was very robust; for instance, this experiment ran
without interruption, 10 hours a day for three days as a
demonstration during a public science fair.

The Movie 5'7 shows Khepera during one of these
experiments. It successively shows:

e Khepera identifying an object,

e Khepera aborting its object recognition due to a pos-
sible fire detection,

e Khepera verifying that it is really facing a fire by
trying to blow it,

e Khepera extinguishing the fire,

e Khepera patrolling the environment (it stops occa-
sionally to detect movement and sounds an alarm if
it succeeds),

e Khepera returning to its base.

AvoidObs ()

if (Obs=01)
then
turn:=true

— else
ij_g

‘Avoid Obstaclg

Figure 13. The symbolic approach in robotics.

11. Synthesis

11.1. Principles, Theoretical Foundation
and Methodology

11.1.1. Principles. The dominant paradigm in
robotics may be caricatured by Fig. 13.

The programmer of the robot has an abstract con-
ception of its environment. He or she may describe the
environment in geometrical terms because the shape
of objects and the map of the world can be specified.
He or she may describe the environment in analytical
terms because laws of physics that govern this world
are known. The environment may also be described
in symbolic terms because both the objects and their
characteristics can be named.

The programmer uses this abstract representation to
program the robot. The programs use these geometric,
analytic and symbolic notions. In a way, the program-
mer imposes on the robot his or her own conception of
the environment.

The difficulties of this approach appear when the
robot needs to link these abstract concepts with the
raw signals it obtains from its sensors and sends to its
actuators.

The central origin of these difficulties is the irre-
ducible incompleteness of the models. Indeed, there are
always some hidden variables, not taken into account in
the model, that influence the phenomenon. The effect
of these hidden variables is that the model and the phe-
nomenon never behave exactly the same. The hidden
variables prevent the robot from relating the abstract

concepts and the raw sensory-motor data reliably. The
sensorimotor data are then said to be “noisy” or even
“aberrant”. A queer reversal of causality occurs that
seem to consider that the mathematical model is exact
and that the physical world has some unknown flaws.

Compelling the environment is the usual answer to
these difficulties. The programmer of the robot looks
for the causes of “noises” and modifies either the robot
or the environment to suppress these “flaws”. The en-
vironment is modified until it corresponds to its math-
ematical model. This approach is both legitimate and
efficient from an engineering point of view. A precise
control of both the environment and the tasks ensures
that industrial robots work properly.

However, compelling the environment may not be
possible when the robot must act in an environment
not specifically designed for it. In that case, completely
different solutions must be devised.

The purpose of this paper is to propose Bayesian
Robot Programming (BRP) as a possible solution.

Figure 14 presents the principles of this approach.

The fundamental notion is to place side by side the
programmer’s conception of the task (the preliminary
knowledge) and the experimental data to obtain the
programming resources called “descriptions”. As seen
in the different examples described in this paper, both
the preliminary knowledge and the descriptions may be
expressed easily and efficiently in probabilistic terms.

The preliminary knowledge gives some hints to the
robot about what it may expect to observe. The pre-
liminary knowledge is not a fixed and rigid model pur-
porting completeness. Rather, it is a gauge, with open

Avoid Obstacle

PMRS|8®m)

- Preliminary \
Knowledge

[
Experimental

Data P
Ve

Figure 14. The BRP approach in robotics.

Bayesian Robot Programming 73

Incompletness

Maximum Entropy

Preliminary Knowledge
+ Principle

Experimental Data

Probability Distributions ' 5 piIn(p;)

Uncertainty

Planb [r) =P(a)P Janm)=P(b |[)P(a [bAm)

Bayesian Inference
P(a [x)+P(~a [r)=1

\

Decision

Figure 15. Theoretical foundation.

parameters, waiting to be molded by the experimental
data. Learning is the means of setting these parameters.
The resulting descriptions result from both the views of
the programmer and the physical specificities of each
robot and environment. Even the influence of the hid-
den variables is taken into account and quantified; the
more important their effects, the more noisy the data,
the more uncertain the resulting descriptions.
However, Bayesian Robot Programming preserves
two very important merits of the symbolic approach.
Thanks to the preliminary knowledge, the descrip-
tions are comprehensible to the programmer. Thanks
to Bayesian inference, complex reasoning is possible.

11.1.2. Theoretical Foundations. The theoretical
foundations of Bayesian robot programming may be
summed up by Fig. 15.

The first step transforms the irreducible incom-
pleteness to uncertainty. Starting from the preliminary
knowledge and the experimental data, learning builds
probability distributions.

The maximum entropy principle is the theoretical
foundation of this first step. Given some preliminary
knowledge and some data, the probability distribution
that maximizes the entropy is the distribution that best
represents this couple. Entropy gives a precise, mathe-
matical and quantifiable meaning to the “quality” of a
distribution (for justifications of the maximum entropy
principle see, for instance (Jaynes, 1982; Robert, 1990;
Bessiére et al., 1998Db)).

Two extreme examples may help to understand what
occurs:

e Suppose that we are studying a formal phenomenon.
There are no hidden variables. A complete model
may be proposed. If we select this model as the
preliminary knowledge, any data set will lead to a
description made of Dirac probability distributions.

74 Lebeltel et al.

There is no uncertainty, any question may be an-
swered either by true or false. Logic appears as a
special case of the Bayesian approach in that partic-
ular context (see Cox, 1979).

e On the opposite extreme, suppose that a prelimi-
nary knowledge consists of very poor hypotheses
about the modeled phenomenon. Learning will lead
to “flat” distributions, containing no information. No
relevant decisions can be made, only completely ran-
dom ones.

Hopefully, most common cases are somewhere in
between these two extremes. Preliminary knowledge,
even imperfect and incomplete, is relevant and provides
interesting hints about the observed phenomenon. The
resulting descriptions are neither Diracs nor uniform
distributions. They give no certitudes, although they
provide a means of taking the best possible decision
according to the available information.

The second step consists of reasoning with the prob-
ability distributions obtained by the first step.

To do so, we only require the two basic rules of
Bayesian inference (see Section 3). These two rules
are to Bayesian inference what the resolution principle
is to logical reasoning (see Robinson, 1965; Robinson,
1979; Robinson and Sibert, 1983a; Robinson and
Sibert, 1983b). These inferences may be as complex
and subtle as those usually achieved with logical
inference tools, as illustrated in the different examples
in this paper.

11.2. Advantages

In this section we survey, comment and briefly discuss
the advantages of the BRP method proposed in this

paper.

e Ability to treat incomplete and uncertain informa-
tion: The basis of this work is related to the fun-
damental difficulty of robot programming in real
environment. For us this difficulty is the direct con-
sequence of the irreducible incompleteness of mod-
els. Consequently, the first advantage of BRP is its
ability to take into account this incompleteness and
the resulting uncertainty. This is obtained in three
steps, thanks to the following three abilities of the
method:

o Ability to convert incompleteness to uncertainty
by learning, as demonstrated in the numerous

instances where the free parameters of the prelim-
inary knowledge are identified from experimental
data (see, for instance, Section 5 concerning
reactive behaviors or Section 8 concerning object
recognition). Object recognition, for instance,
shows that with simple preliminary knowledge,
we are able to learn descriptions sufficient for
classification. However, in this task there are
numerous ignored variables such as, for instance,
the color and material of the objects, the global
lighting of the room, the approximate quality of
the contour following behavior or the position
from where the robot has started.

o Ability to reason despite uncertainty, as demon-
strated by all the experiments requiring inference
(see, for instance, Section 6 about sensor fusion
or Section 8 about object recognition). The
“nightwatchman” task (see Section 10) shows the
complexity of the possible reasoning (41 variables,
12 descriptions, four hierarchical levels).

o Ability to decide, taking uncertainty into account:
The decision strategy selected in this work has
been to draw the values of the searched variables
from the distributions obtained by the preceding
inference step. This strategy “renders” uncertainty,
the decision are nearly deterministic when the
distributions are sharp, and conversely, nearly
random when they are flat.

e Simple and sound theoretical bases: The proposed

approach is founded on simple theoretical bases. Es-
sential questions may be asked clearly and formally
and eventually answered by mathematical reason-
ing. For instance, one may consider to fairly compare
Bayesian inference and logic as two possible mod-
els of reasoning. Thanks to these theoretical bases,
the experimental results (successes or even more en-
lightening failures) may be analyzed and understood
in detail.

Generic, systematic and simple programming
method: BRP is simple, systematic and generic. Sim-
ple, as this method may be learned and mastered eas-
ily. Systematic, as it may be applied with rigor and
efficiency. Generic, as this method may be also used
in numerous other domains than robot programming.
Homogeneity of representations and resolution pro-
cesses: BRP is based on a unique data structure,
called a description, associated with two inference
rules. This homogeneity leads to simple and generic
program development.

e Obligation to state all hypothesis: Choosing a de-
scription as the only data structure to specify robotics
programs and following a systematic method to do so
compel the programmer to exhaustively express his
knowledge about the task. Everything that should be
known about a given robotic problem is in its descrip-
tion: the synthesis between the preliminary knowl-
edge and the experimental data. There is no hidden
knowledge in either the inference program or the
decision algorithm. As the description encapsulates
all the relevant information, exchanging, sharing or
discussing models is easy and rigorous.

e Large capacity of expression: Descriptions offer a
large capacity of expression to specify models and
to question them as well.

o Specification capacity: The different experiments
described in this paper prove that descriptions may
be used to specify numerous different models. Let
us recall that we used descriptions to learn simple
reactive behaviors (Section 5), to combine them
(Section 6), to hierarchically compose them (Sec-
tion 8), to merge sensor information (Section 6), to
recognize situations (Section 8), to carry out tem-
poral sequencing (Section 9) and finally, to specify
a task integrating all the previously defined de-
scriptions (Section 10).

o Question capacity: Let us also recall that any ques-
tion may be asked to a joint distribution. Mathe-
matically, all variables appearing in a joint dis-
tribution play the exact same role. They may all,
indifferently, be known, unknown or searched.
The description is neither a direct nor an in-
verse model. Sensor fusion (Section 6), situation
recognition (Section 8) or inverse programming
(Section 9) offer instances where the questions
asked do not correspond to the specification or-
der. Furthermore, there is no ill-posed problem. If
a question may have several solutions, the prob-
abilistic answer will simply have several peaks.
Some instances of sensor fusion exemplified this
point (see Section 6.3).

e Ability for real incremental development of robots:
Bayesian Robot Programming, thanks to its clear
theoretical foundations and to its rigorous program-
ming methodology, appears to be an incremental
method of developing robot programs that can really
be used in practice. The final experiment (Section
10) demonstrates that point.

Bayesian Robot Programming 75

o Ability to combine descriptions: The first incre-

mental development tool is description combi-
nation (Section 6). With this tool it is possible
to define new behaviors as weighted mixtures of
different simpler ones.

o Ability to compose descriptions: The second in-

cremental development tool is hierarchical de-
scription composition (Section 8). It is in some
senses similar to calling sub-procedures in clas-
sical programming, as some of the parametric
forms appearing in a decomposition may be ques-
tions addressed to more basic descriptions.
Description = Resource: More generally, a de-
scription, as an internal representation of a phys-
ical phenomenon, may be considered as a pro-
gramming resource. For instance, a description
may offer new variables to be used in other de-
scriptions. This is the case with the variable O
that identifies the object, provided by the object
recognition description (Section 8). The object
recognition also proposes another example of the
use of a description as a programming resource.
Indeed, the contour following behavior is a nec-
essary tool for computing the four variables Nlt,
Nrt, Per and Lrl used by the object recognition
description. Numerous other possibilities for en-
hancing the capacity of a robot using descriptions
as resources may be found in Dedieu’s Ph.D. the-
sis (Dedieu, 1995).

11.3. BRP in Practice

BRP is a very simple, practical and efficient way to
program robots for the 3 main following reasons:

e BRP proposes a generic methodology for robot pro-
gramming:

1.

Specification: define the pre-
liminary knowledge.

1.1 Choose the pertinent vari-

ables.

1.2 Decompose the joint distri-
bution.

1.3 Define the parametric
forms.

Identification: identify the
free parameters of the prelimi-
nary knowledge.

Utilization: ask a question of
the joint distribution.

76 Lebeltel et al.

e The conditional independencies are used to break the
complexity and keep the computation tractable.

¢ BRP may really be considered as a programming lan-
guage because it proposes three main tools to build
complex programs from simpler ones:

o Calling Bayesian subroutines.
o Probabilistic if-then-else.
o Inverse programming to sequence behaviors.

11.4. Scalability

This paper presented only very simple instances of
robot programming for didactic purposes. The goal was
to illustrate the fundamental principles rather than to
present applications.

Consequently two fundamental questions are still
open: is BRP scalable? May it be used for practical
robotics applications?

Elements of answer to these two questions may be
found in other works that used the BRP approach:

e Kamel Mekhnacha built a Bayesian robotic CAD
system which offers the usual capabilities of
such a system but also handles the uncertainties.
This system works with hundreds of variables
and tens of probability distributions (Mekhnacha,
1999; Mekhnacha, Mazer and Bessiére, 2000;
Mekhnacha, Mazer and Bessiére, 2001)

e Julien Diard proposed in his Ph.D. thesis the con-
cept of Bayesian Maps, which is a specialization of
the BRP formalism, for representing the environ-
ment in navigation tasks. In particular, the descrip-
tions and the combination operators considered in
this work are special cases of the one presented here
(Diard, 2003).

e Christophe Coué is using BRP for an Advanced
Driving Assistance System (ADAS) (Coué et al.,
2002; Coué et al., 2003).

Ongoing works include manipulation with 6 DOF
arms, pick and place problems, videogame Bot pro-
gramming, outdoor SLAM with automotive vehicles
and indoor service robotics.

Notes

1. Partially Observable Markov Decision Process.

2. Hidden Markov Models.

3. By contrast, the disjunction of two variables, defined as the set
of propositions x; V y;, is not a variable. These propositions are
not mutually exclusive.

4. See some references on justifications of these two rules in
Section 2.

5. Order of magnitude on a standard desktop computer for the in-

ferences required by the experiments described in the sequel.

. Application Programming Interface.

. Ecole Polytechnique Fédérale de Lausanne (Switzerland).

. http://www.K-team.com/.

. http://www-laplace.imag.fr/ENGLISH/PRESENTATION/

Semaine-Science/Trans7/T7.mov.

10. http://www-laplace.imag.fr/ENGLISH/PRESENTATION/
Semaine-Science/Trans8/T8.mov.

11. http://www-laplace.imag.fr/ENGLISH/PRESENTATION/
Semaine-Science/Trans9/T9.mov.

12. P (Dir ® Prox ® Vrot | §-avoid @ m-obstacle) and P(Dir ® Prox
® Vrot | 8-follow ® m-obstacle).

13. http://www-laplace.imag.fr/ENGLISH/PRESENTATION/
Semaine-Science/Trans10/T10.mov.

14. see Diard and Lebeltel (1999).

15. Hierachical Mixture of Expert.

16. A Laplace succession law on a variable V' is defined by: N'I—L”";J
with N the total number of observations, |V] the number of
possible values for V and n, the number of observations of the
specific value v.

17. http://www-laplace.imag.fr/ENGLISH/PRESENTATION/
Semaine-Science/Trans12/T12.small.mov.

O 00 3 N

References

Aji, S.M. and McEliece, R.J. 2000. The generalized distributive law.
IEEE Trans. Information Theory, 46(2).

Alami, R., Chatila, R., Fleury, S., Ghallab, M., and Ingrand, F. 1998.
An architecture for autonomy. International Journal for Robotics
Research (IJRR), 17(4):315-337.

Arulampalam, S., Maskell, S., Gordon, N., and Clapp, T. 2001.
A tutorial on particle filters for on-line nonlinear/non-Gaussian
Bayesian tracking. IEEE Transactions on Signal Processing.
Available at citeseer.nj.nec.com/maskell01tutorial.html.

Aycard, O. 1998. Architecture de contrdle pour robot mobile en
environnement intérieur structuré. Ph.D. thesis, Université Henri
Poincaré, Nancy, France.

Bernhardt, R. and Albright, S.L. (Ed.). 1993. Robot Calibration.
Chapman & Hall.

Beetz, M. and Belker, T. (2001). Learning strucured reactive naviga-
tion plans from executing MDP navigation policies. In Proceed-
ings of Agents 2001.

Bessiere, P., Dedieu, E., Lebeltel, O., Mazer, E., and Mekhnacha,
K. 1998a. Interprétation ou Description (I): Proposition pour une
théorie probabiliste des systemes cognitifs sensori-moteurs. Intel-
lectica, 26/27:257-311, Paris, France.

Bessiere, P., Dedieu, E., Lebeltel, O., Mazer, E., and Mekhnacha,
K. 1998b. Interprétation ou Description (II): Fondements
mathématiques de I’approche F+D. Intellectica, 26/27:313-336,
Paris, France.

Bessiere, P. 2002. Procédé de détermination de la valeur a don-
ner a différents parametres d’un systeme: Demande de brevet
d’invention n°0235541154.4, Institut Européen des Brevets.

Bessiere, P. and the BIBA-INRIA Research Group. 2003. Survey:
Probabilistic methodology and techniques for artefact conception
and development. INRIA Technical Report RR-4730. Available at
http://www.inria.fr/rrrt/rr-4730.html.

Borrelly, J.-J., Coste, E., Espiau, B., Kapellos, K., Pissard-Gibollet,
R., Simon, D., and Turro, N. 1998. The ORCCAD architecture.
International Journal for Robotics Research (IJRR), 17(4):338—
359.

Boutilier, C., Reiter, R., Soutchanski, M., and Thrun, S. 2000.
Decision-theoretic, high-level agent programming in the situation
calculus. In Proceedings of AAAI 2000.

Brafman, R.I., Latombe, J.-C., Moses, Y., and Shoham, Y.
1997. Applications of a logic of knowledge to motion plan-
ning under uncertainty. Journal of the ACM, 44(5):633-
668.

Bretthorst, G.L. 1988. Bayesian Spectrum Analysis and Parameter
Estimation. Springer Verlag.

Brooks, R.A. 1986. A robust layered control systems for a mo-
bile robot. IEEE Journal of Robotics and Automation, 2(1):
14-23.

Cooper, G. 1990. The computational complexity of probabilistic in-
ference using Bayesian belief networks. Artificial Intelligence,
42:393-405.

Coué, C. and Bessiere, P. 2001. Chasing an elusive target with a
mobile robot. In IEEE/IROS 2001, Maui, Hawaii, USA.

Coué, C., Fraichard, Th., Bessiere, P., and Mazer, E. 2002. Multi-
sensor data fusion using bayesian programming: An automotive
application. In Proc. of the IEEE-RSJ Int. Conf. on Intelligent
Robots and Systems (IROS).

Coué, C., Fraichard, Th., Bessiere, P., and Mazer, E. 2003. Us-
ing Bayesian programming for multi-sensor multi-target tracking
in automotive applications. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA) (in Press).

Cox, R.T. 1961. The Algebra of Probable Inference. The John
Hopkins Press: Baltimore, USA.

Cox, R.T. 1979. Of inference and inquiry, an essay in inductive logic.
In Raphael D. Levine and Myron Tribus (Eds.), The Maximum
Entropy Formalism, M.L.T. Press: USA.

Dagum, P. and Luby, M. 1993. Approximate probabilistic reason-
ing in Bayesian belief network is NP-Hard. Artificial Intelligence,
60:141-153.

Darwiche, A. and Provan, G. 1997. Query DAGs: A practical
paradigm for implementing belief-network inference. Journal of
Artificial Intelligence Research (JAIR), 6:147-176.

Dedieu, E. 1995. La représentation contingente: Vers une reconcili-
ation des approches fonctionnelles et structurelles de la robotique
autonome. These de troisieme cycle INPG (Institut National Poly-
technique de Grenoble) Grenoble, France.

Dekhil, M. and Henderson, T.C. 1998. Instrumented sensor system
architecture. International Journal for Robotics Research (IJRR),
17(4):402-417.

Delcher, A.L., Grove, A.J., Kasif, S., and Pearl, J. 1996. Logarithmic-
time updates and queries in probabilistic networks. Journal of
Artificial Intelligence Research (JAIR), 4:37-59.

Diard, J. and Lebeltel, O. 1999. Bayesian learning experiments with
a Khepera Robot, In Experiments with the Mini-Robot Khepera:
Loffler Mondada Riickert (Ed.), Proceedings of the Ist Inter-
national Khepera Workshop, December 1999, Paderborn, HNI-
Verlagsschriftenreihe, Band 64, Germany, pp. 129-138.

Diard, J. and Lebeltel, O. 2000. Bayesian programming and hi-
erarchical learning in robotics. In Meyer, Berthoz, Floreano,
Roitblat and Wilson (Eds.), SAB2000 Proceedings Supplement
Book, Publication of the International Society for Adaptive Be-
havior: Honolulu.

Bayesian Robot Programming 77

Diard, J. 2003. La carte bayésienne: Un modele probabiliste
hiérarchique pour la navigation en robotique mobile. PhD thesis,
Institut National Polytechnique de Grenoble (INPG), 27 janvier
2003.

Donald, B.R. 1988. A geometric approach to error detection and
recovery for robot motion planning with uncertainty. Artificial
Intelligence, 37:223-271.

Erickson, G.J. and Smith, C.R. 1988a. Maximum-Entropy and
Bayesian Methods in Science and Engineering, Vol. 1: Founda-
tions. Kluwer Academic Publishers.

Erickson, G.J. and Smith, C.R. 1988b. Maximum-Entropy and
Bayesian Methods in Science and Engineering, Vol. 2: Applica-
tions. Kluwer Academic Publishers.

Frey, B.J. 1998. Graphical Models for Machine Learning and Digital
Communication. MIT Press.

Fox, D., Burgard, W., Kruppa, H., and Thrun, S. 2000. A Probabilistic
approach to collaborative multi-robot localization. Autonomous
Robots, 8:325-344.

Fox, D., Thrun, S., Dellaert, F., and Burgard, W. 2001. Particle filters
for mobile robot localization. In Doucet, A., de Freitas, N., and
Gordon, N. (Eds.), Sequential Monte Carlo Methods in Practice,
Springer-Verlag: New York, USA.

Gutmann, J.-S., Burgard, W., Fox, D., and Konolige, K. 1998. Ex-
perimental comparison of localization methods. In Interenational
Conference on Intelligent Robots and Systems.

Halpern, J.Y. 1999a. A counterexample to theorems of Cox and
Fine. Journal of Artificial Intelligence Research (JAIR), 10:67—
85.

Halpern, J.Y. 1999b. Cox’s Theorem revisited. Journal of Artificial
Intelligence Research (JAIR), 11:429-435.

Jaakkola, T.S. and Jordan, M.I. 1999. Variational probabilistic infer-
ence and the QMR-DT network. Journal of Artificial Intelligence
Research (JAIR), 10:291-322.

Jaynes, E.T. 1979. Where do we stand on maximum entropy? In
Raphael D. Levine and Myron Tribus (Eds.), The Maximum En-
tropy Formalism, M.I.T. Press: USA.

Jaynes, E.T. 1982. On the rationale of maximum-entropy methods.
In Proceedings of the IEEE.

Jaynes, E.T. 2003. Probability Theory—The logic of Science.
Cambridge University Press (in press).

Jensen, F., Lauritzen, S., and Olesen, K. 1990. Bayesian updating in
recursive graphical models by local computations. Computational
Statistical Quaterly, 4:269-282.

Jordan, ML.I. and Jacobs, R.A. 1994. Hierarchical mixtures of experts
and the EM algorithm. Neural Computation, 6:181-214.

Jordan, M. 1998. Learning in Graphical Models. MIT Press.

Jordan, M., Ghahramani, Z., Jaakkola, T.S., and Saul, L.K. 1999. An
introduction to variational methods for graphical models. Machine
Learning (in press).

Kaelbling, L.P,, Littman, M.L., and Cassandra, A.R. 1996. Partially
observable Markov decision processes for artificial intelligence,
reasoning with uncertainty in robotics. In International Workshop,
RUR’95, Proceedings, Springer-Verlag, pp. 146-162.

Kaelbling, L.P., Cassandra, A.R., and Kurien, J.A. 1996. Acting un-
der uncertainty: Discrete Bayesian models for mobile-robot navi-
gation. In Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems.

Kaelbling, L.P,, Littman, M.L., and Cassandra, A.R. 1998. Planning
and acting in partially observable stochastic domains. Artificial
Intelligence, 101.

78 Lebeltel et al.

Kapur, J.N. and Kesavan, H.K. 1992. Entropy Optimization Princi-
ples with Applications. Academic Press.

Koening, S. and Simmons, R. 1998. A robot navigation architecture
based on partially observable Markov decision process models.
In D. Kortenkamp, R.P. Bonasso, and R. Murphy (Eds.), Mobile
Robots and Artificial Intelligence, AAAI Press.

Koller, D. and Pfeffer, A. 1997. Object-oriented Bayesian networks.
In Proceedings of the 13th Annual Conference on Uncertainty in
Al (UAI), Providence, Rhode Island, USA.

Konolidge, K. 1997. Improved occupancy grids for map building.
Autonomous Robots, 4:351-367.

Konolidge, K. and Chou, K. 1999. Markov localization using corre-
lation. In International Joint Conference on Artificial Intelligence,
Stockolm, Sweden.

Lane, T. and Kaelbling, L.P. 2001. Toward hierachical decom-
position for planning in uncertain environments. Workshop on
planning under Uncertainty and Incomplete Information at the
2001 International Joint Conference on Artificial Intelligence
(IJCAI-2001).

Laplace, Pierre Simon de. 1774. Mémoire sur les probabilités des
causes par les événements; Mémoire de 1’académie royale des sci-
ences. Reprinted in Oeuvres completes de Laplace, vol. 8, Gauthier
Villars, Paris, France.

Laplace, Pierre Simon de. 1814. Essai philosophique sur les proba-
bilités; Courcier Imprimeur, Paris. Reprinted in Oeuvres complétes
de Laplace, vol. 7, Gauthier Villars, Paris, France.

Lauritzen, S. and Spiegelhalter, D. 1988. Local computations with
probabilities on graphical structures and their application to ex-
pert systems. Journal of the Royal Statistical Society B, 50:157—
224.

Lauritzen, S. L. 1996. Graphical Models. Oxford University Press.

Lebeltel, O. 1999. Programmation Bayésienne des Robots. Ph.D.
Thesis, Institut National Polytechnique de Grenoble (INPG);
Grenoble, France.

Lebeltel, O., Diard, J., Bessiére, P., and Mazer, E. 2000. A
bayesian framework for robotic programming. In Twentieth In-
ternational Workshop on Bayesian Inference and Maximum En-
tropy Methods in Science and Engineering (MaxEnt 2000), Paris,
France.

Lozano-Perez, T., Mason, M.T., and Taylor, R.H. 1984. Automatic
synthesis of fine-motion strategies for robots. International Jour-
nal of Robotics Research, 3(1):3-24.

MacKay, D.G. 1996. Introduction to Monte Carlo methods. In M.
Jordan (Ed.), Proc. of an Erice Summer School.

Maes, P. 1989. How to do the right thing. Connection Science Jour-
nal, 1(3): 291-323.

Matalon, B. 1967. Epistémologie des probabilités. In Jean Piaget
(Ed.), Logique et connaissance scientifique, Encyclopédie de la
Pléiade, Editions Gallimard, Paris, France.

Mazer, E., Boismain, G., Bonnet des Tuves, J., Douillard, Y.,
Geoffroy, S., Dubourdieu, J., Tounsi, M., and Verdot, F. 1998.
START: An industrial system for teleoperation. In Proc. of the
IEEE Int. Conf. on Robotics and Automation, vol. 2, Leuven (BE),
pp. 1154-1159.

McLachlan, G.J. and Deep, D. 2000. Finite Mixture Models. Wiley:
New York, USA.

Mekhnacha, K. 1999. Méthodes probabilistes bayésiennes pour la
prise en compte des incertitudes géométriques: Application a la
CAO-robotique. PhD. thesis INPG (Institut National Polytech-
nique de Grenoble), Grenoble, France.

Mekhnacha, K., Mazer, E., and Bessiere, P. 2000. A Robotic
CAD system using a Bayesian framework. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS
2000, Best Paper Award), vol. 3, Takamatsu, Japan, pp. 1597—
1604.

Mekhnacha, K., Mazer, E., and Bessiere, P. 2001. The design and im-
plementation of a Bayesian CAD modeler for robotic applications.
Advanced Robotics, 15(1).

Mohammad-Djafari, A. and Demoment, G. 1992. Maximum Entropy
and Bayesian Methods. Kluwer Academic Publishers.

Murphy, K. 1999. Bayesian map learning in dynamic environments.
In Proceedings of NIPS 99.

Neal Radford, M. 1993. Probabilistic inference using Markov chain
Monte-Carlo methods. Technical Report, CRG-TR-93-1, Univer-
sity of Toronto.

Parr, R. and Russell, S. 1998. Reinforcement learning with hierar-
chies of machines. In Proceedings of NIPS, 1998.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann Publishers:
San Mateo, California, USA.

Robert, C. 1990. An entropy concentration theorem: Applications, in
artificial intelligence and descriptive statistics. Journal of Applied
Probabilities.

Robinson, J.A. 1965. A machine oriented logic based on the resolu-
tion principle. Jour. Assoc. Comput. Mach., 12.

Robinson, J.A. 1979. Logic: Form and Function. North-Holland,
New York, USA.

Robinson, J.A. and Sibert, E.E. 1983a. LOGLISP: An alternative to
PROLOG. Machine Intelligence, 10.

Robinson, J.A. and Sibert, E.E. 1983b. LOGLISP: Motivation, design
and implementation. Machine Intelligence, 10.

Rosenblatt, J.K. 2000. Optimal selection of uncertain actions by max-
imizing expected utility. Autonomous Robots, 9:17-25.

Roumeliotis, S.I. and Bekey, G. 2000. Collective localization: A dis-
tributed Kalman filter approach to localization of groups of mo-
bile robots. In IEEE International Conference on Robotics and
Automation.

Roumeliotis, S.I. and Bekey, G.A. 2000. Bayesian estimation and
Kalman filtering: A unified framework for Mobile Robot localiza-
tion. In Proc. IEEE Int. Conf. on Robotics and Automation, San
Fransisco, CA, pp. 2985-2992.

Ruiz, A., Lopez-de-Teruel, PE., and Garrido, M.C. 1998. Proba-
bilistic Inference from arbitrary uncertainty using mixtures of fac-
torized generalized Gaussians. Journal of Artificial Intelligence
Research (JAIR), 9:167-217.

Saul, L.K., Jaakkola, T., and Jordan, M.I. 1996. Mean field theory
for sigmoid belief networks. Journal of Artificial Intelligence Re-
search (JAIR), 4:61-76.

Schneider, S.A., Chen, V.W., Pardo-Castellote, G., and Wang, H.H.
1998. ControlShell: A software architecture for complex elec-
tromechanical systems. International Journal for Robotics Re-
search (IJRR), 17(4):360-380.

Shatkay, H. 1998. Learning models for robot navigation. PhD.
dissertation and Technical Report cs-98-11, Brown University,
Department of Computer Science, Providence, RI.

Smith, C.R. and Grandy, W.T. Jr. 1985. Maximum-Entropy and
Bayesian Methods in Inverse Problems. D. Reidel Publishing
Company.

Tarentola, A. 1987. Inverse Problem Theory: Methods for Data Fit-
ting and Model Parameters Estimation. Elsevier: New York, USA.

Thrun, S. 1998. Bayesian landmark learning for mobile robot local-
ization. Machine Learning, 33(1):41-76.

Thrun, S., Burgard, W., and Fox, D. 1998. A probabilistic ap-
proach to concurrent mapping and localization for mobile robots.
Autonomous Robots, 5:253-271.

Thrun, S. 2000. Towards programming tools for robots that inte-
grate probabilistic computation and learning. In Proceedings of
the IEEE International Conference on Robotics and Automation
(ICRA).

Zhang, N.L. and Poole, D. 1996. Exploiting causal independence
in Bayesian network inference. Journal of Artificial Intelligence
Research (JAIR), 5:301-328.

Olivier Lebeltel received his Ph.D. in cognitive sciences from the
Institut National Polytechnique de Grenoble, France, in 1999. Cur-
rently, he is a research associate at the Institut National de Recherche
en Informatique et Automatique de Grenoble. Dr. Lebeltel works on
modeling, inference and learning with Bayesian approaches applied
to bio-inspired robotics and virtual reality.

Pierre Bessiére is a senior researcher at CNRS (Centre National de
la Recherche Scientifique) since 1992. He took his Ph.D. in Artifi-
cial Intelligence in 1983 from the Institut National Polytechnique of
Grenoble, France. He did a post-doctorate at the Stanford Research
Institute and then worked for several years in the computer science
industry. He has been working for the last 15 years on evolutionary
algorithms and Bayesian inference. He leads, with Emmanuel Mazer,

Bayesian Robot Programming 79

the LAPLACE research group on stochastic models for perception,
inference and action (http://www-laplace. imag.fr).

Julien Diard received his Ph.D. in computer science from the Insti-
tut National Polytechnique de Grenoble in 2003. He is currently a
postdoctoral fellow with both the Laboratoire de Physiologie de la
Perception et de 1’ Action, of the College de France, Paris, and the
Department of Mechanical Engineering of the National University
of Singapore. Dr. Diard works on hierarchical Bayesian modelling
and learning for mobile robot navigation, and in particular, testing
the biological relevance of his model, the Bayesian map.

Emmanuel Mazer (born in 1953) is a senior researcher at CNRS
since 1982. He took a Master in mathematics and his Ph.D. (1989) in
computer science from Grenoble University. He did a post-doctorate
at the department of Artificial Intelligence of the University of Ed-
inburgh. He is a co-founder of two industrial company in Europe
(ITMI and Aleph-technologies) and one in the USA. He worked as
a research fellow at the MIT Al lab for three years and he is a co-
author of a book on automatic robot programming (Handey MIT
press). Currently he leads with Pierre Bessiére the Laplace research
group and works on Bayesian programming.

The design and implementation of a Bayesian CAD modeler for
robotic applications

K. MEKHNACHA * E. MAZER | P. BESSIERE *

Abstract

We present a Bayesian CAD modeler for robotic applications. We address the problem of taking into
account the propagation of geometric uncertainties when solving inverse geometric problems. The proposed
method may be seen as a generalization of constraint-based approaches in which we explicitly model geometric
uncertainties. Using our methodology, a geometric constraint is expressed as a probability distribution on the
system parameters and the sensor measurements, instead of a simple equality or inequality. To solve geometric
problems in this framework, we propose an original resolution method able to adapt to problem complexity.
Using two examples, we show how to apply our approach by providing simulation results using our modeler.

Keywords: Robotics, CAD, Bayesian reasoning, Monte Carlo methods, geometric constraints.

1 Introduction

The use of geometric models in robotics and CAD systems necessarily requires a more or less realistic modeling
of the environment. However, the validity of calculations with these models depends on their degree of fidelity
to the real environment and the capacity of these systems to represent and take into account possible differences
between the models and reality when solving a given problem.

This paper presents a new methodology based on Bayesian formalism to represent and handle geometric
uncertainties in robotics and CAD systems. The approach presented in this paper may be seen as a generalization
of constraint-based approaches. This generalization consists of explicitly taking into account the uncertainties in
models. A constraint on a relative pose between two frames is represented by a probability distribution on the
parameters of this pose instead of simple equality or inequality. In this framework, modeling information given
by the programmer and the measurements obtained using sensors are represented and used in a homogeneous
way. For a given problem, all the information we include on the geometric model and on the responses of the
sensors used, is used optimally applying Bayesian reasoning.

Since the work of Laplace [Laplace, 1774], numerous results have been obtained using Bayesian inference
techniques to take account of uncertainty. Bayesian formalism has been applied in diverse research fields.
Numerous applications have been developed in physics [Jaynes, 1996, Neal, 1993], in artificial intelligence
[Jaakkola and Jordan, 1999], as well as in mobile robotics [Thrun, 1998, Bessiére et al., 1998] and computer vision
[Weiss and Adelson, 1998], and especially in parameter identification problems [Presse and Gautier, 1992].

The principle of the proposed method is to infer, for a given problem, the marginal distribution of the unknown
parameters using the probability calculus. The original geometric problem is reduced to an optimization problem
over the marginal distribution to find a solution with maximum probability. In the general case, this marginal
probability may contain an integral on a large dimension space.

The resolution method used to solve this integration/optimization problem is based on an adaptive genetic
algorithm. The problem of integral numerical estimation is approached using a stochastic Monte Carlo method.
The accuracy of this estimation is controlled by the optimization process to reduce computation time.

*Laboratoire LEIBNIZ, 46, avenue Félix Viallet, 38031 Grenoble, France
fLaboratoire GRAVIR, INRIA Rhéne-Alpes, ZIRST 38030 Montbonnot, France
fLaboratoire LEIBNIZ, 46, avenue Félix Viallet, 38031 Grenoble, France

A large category of robotic applications are instances of inverse geometric problems in the presence of un-
certainties, for which our method is well suited. The simplicity of our specification method and the robustness
of our resolution method make our approach applicable to numerous robotic applications [Mekhnacha, 1999,
Mekhnacha et al., 2000], such as:

e kinematics inversion under geometric uncertainties using possibly redundant mechanisms,

e robot and sensor calibration,

e parts’ pose and shape calibration using sensor measurements,

e robotic workcell design to obtain a configuration that can accomplish a given task with maximum accuracy.

Extensive experimentation on the approach was made possible thanks to the design and the implementation of
a Bayesian CAD modeler. Experimental results obtained with this modeler have demonstrated the effectiveness
and the robustness of our approach. Two examples of this experimentation are presented in this paper.

This paper is organized as follows. We first report related work in Sect. 2. In Sect. 3 we present our
specification methodology and show how to formulate an optimization problem. In Sect. 4 we describe our
numerical resolution method. Section 5 is an overview of the implementation of our modeler. We present two
examples to illustrate our approach in Sect. 6 and Sect. 7 and give some conclusions and perspectives in Sect. 8.

This paper summarizes the work presented in the Ph.D. thesis of Kamel Mekhnacha [Mekhnacha, 1999].

2 Related work

The representation and handling of geometric uncertainties is a central issue in the fields of robotics and mechanical
assembly. Since the precursor work of Taylor [Taylor, 1976], in which geometric uncertainties were taken into
account in the robot manipulators planning process, numerous approaches have been proposed to model these
uncertainties explicitly.

Methods modeling the environment using “certainty grids” [Moravec, 1988] and those using uncertain models
of motion [Lozano-Perez, 1987, Alami and Simeon, 1994] have been used extensively, especially in mobile robotics.

Gaussian models to represent geometric uncertainties and to approximate their propagation have been pro-
posed in manipulator programming [Puget, 1989] as well as in assembly [Sanderson, 1997]. Kalman filtering
is a Bayesian recurrent implementation of these models. This technique has been used widely in robotics and
vision [Zhang and Augeras, 1992] and particularly in data fusion [Bar-Shalom and Fortmann, 1988]. Gaussian
model-based methods have the advantage of economy in the computation they require. However, they are only
applicable when a linearization of the model is possible. Another limitation of these methods is their inability to
take account of inequality constraints.

Geometric constraint-based approaches [Taylor, 1976, Owen, 1996] using constraint solvers have been used in
robotic task-level programming systems. Most of these methods do not represent uncertainties explicitly. They
handle uncertainties using a least-squares criterion when the solved constraints systems are over-determined.
In the cases where uncertainties are explicitly taken into account (as is the case in Taylor’s system), they are
described solely as inequality constraints on possible variations.

3 Specification of probabilistic geometric constraints

In this section, we describe our methodology by giving some concepts and definitions necessary for probabilistic
geometric constraint specification. We further show how to derive an objective function to maximize from the
original geometric problem.

3.1 Probabilistic kinematic graph

A geometric problem is described as a “probabilistic kinematic graph,” which we define as the directed graph
having a set of n frames S = {S1,---,S,} as vertices and a set of m edges A = {A;,j,, -+, Ai,.j.. }» Where A;, ;,
denotes an edge between the parent vertex S;, and its child S;, and represents a probabilistic constraint on the
corresponding relative pose. We call these edges “probabilistic kinematic links”. A given edge may describe:

Figure 1: Example of a cycle in the kinematic graph.

e a modeling constraint (a piece of knowledge) on the relative pose of the parent frame and its child,
e a sensor measurement of the pose of a given entity,

e or a constraint we wish to satisfy to solve the problem (an objective value with a given precision, for
example).

Each edge A;, j, is labeled by:

1. a probability distribution p(Q;,j,) where Q;,j, is the relative pose vector (six-vector) Qi j,
(tztytzrmryrz)T. The first three parameters of this six-vector represent the translation, while the remaining
three represent the rotation.

2. possible equality/inequality constraints (Ex(Qi, ;) = 0,Cx(Qi,) < 0). These constraints represent possi-
ble geometric relationships between the two geometric entities attached to these two frames. Their shapes
depend on the type of the geometric relationship. We implement several relationships between geomet-
ric entities in this work, such as points, polygonal faces, edges, spheres and cylinders. The details on
equality /inequality constraints induced by these relationships can be found in [Mekhnacha, 1999).

3. a “status” six-vector describing for each parameter of Q;, ., its role (nature) in the problem. A status can
take one of the three following values:

e Unknown (denoted by X) for parameters representing the unknown variables of the problem and whose
values must be found to solve the problem.

e Free (denoted by L) for parameters whose values are only known with a probability distribution. This
allows to express uncertainties on the model.

e Fized (denoted by F) for parameters having known fixed scalar values that cannot be changed.

In the general case, the kinematic graph may contain a set of cycles. The presence of a cycle represents the
existence of more than one path between two vertices (frames) of the graph. To ensure the geometric coherence
of the model, the computation of the relative pose between these two frames using all paths must give the same
value. For each cycle containing k edges (see Fig. 1), we have:

d

d5¢3i+1
Ts,s, = Tsisl-+1 * T

Sit1Si42 dsy._y 5y, ds; 51 ds; sy ds;_1s; _
i+1Si42 T TSk—ISk * Tsksl * TSISZ Kok TSiﬂSi = 1y, (1)

where T;; is the 4 x 4 homogeneous matrix corresponding to the pose vector @;;, I4 is the 4 x 4 identity matrix
and d;; € {—1, 1} is the direction in which the edge A;; has been used.

We call these additional equality constraints the “cycle-closing constraints”. They are global constraints
involving, for each cycle, all the parameters it contains. The minimal number of cycles allowing coverage of a
connected graph having n vertices and m edges is p = m —n+ 1 [Gondran and Minoux, 1990]. Consequently, we
obtain p cycle-closing constraints for a given problem.

3.2 Objective function

Given a probabilistic kinematic graph, we are interested in constructing a marginal distribution over the unknown
parameters (parameters having the unknown status) of the problem. Maximizing this distribution will provide a
solution to the problem.

We define the following sets of propositions:

e A set of p propositions {/;}Y_; such as:
K; = “cycle ¢; is closed”.

e A set of m propositions {H}7-, such as:
Hi = “Ci(Qiyj) < 0 and Eg(Qiyj,) = 0.

If we denote the unknown parameters of the problem by X, a solution to a problem is a value of X that
maximizes the marginal distribution

P(X|Hy - HKr -).

If we denote by L’ the concatenation of the parameters having status L and by X the concatenation of the
parameters having status X, we can write using the probability calculus:

P(X[Hy- - HnKy - Kp) /dL’ P(XL'Hy - HpKy - Kp)
= p(X)/dL’ p(LNp(Hy -+ HiKCr -+ KCp| X L).

To use the global equality constraints (Eq. 1), we take for each cycle ¢;, i = 1---p a pose vector we rename
O; (Fig. 1). This pose vector is chosen so that it contains no parameters having the X status. Equation 1 allows
us to compute the value of O; using the values of all the other pose vectors pertaining to ¢;:

Oi = Qslsk
= E (Q51325Q52533"'7st715k)

= wvect ((771@75(625152))‘715152 * (mat(QSZSS))dSZS3 Kk (mat(stflsk))dS’“*ls’“) ,
where
e vect is the function allowing to get a pose vector from the corresponding 4 x 4 homogeneous matrix,
e mat is the function allowing to get a 4 x 4 homogeneous matrix from the corresponding pose vector,
e d;; € {1,—1} denotes the direction in which the edge A;; has been used.

Using this equality constraint cancels the integrals over the parameters of L’ that pertain to O;, because the
integrand takes a non-null value only for the point that respect Eq. 1.

For each edge A;j, if we denote by L;; the set of parameters having status L and by X;; the parameters having
status X, we can write, using appropriate independence assumptions, the following general form:

p(X|Hi- - Hmlr - - Kp) x p(X)I(X),

where

I(X) = / dL

P(Liyjy)p(Ha | Xy 4, iy jy)

P(Liy, i)P(Hin—pl X, iy L i)
bo, (Fl (Xa L))p(Hm—p+1|F1 (Xa L))

po, (Fp(X, L)p(Hm|Fp(X, L)). (2)

For each cycle ¢;, i = 1---p, po, denotes the distribution over O;, while L C L’ is the concatenation of
Liljl’ T ,Lim,pjm,p-

The distribution p(X) is called the a priori distribution over the unknown parameters X (before incorporating
the constraints), while the distribution p(X|H1 - --HmK1---Kp) is called the a posteriori distribution over X
(after incorporating the constraints).

For each A;, .,k =1,---,m — p, marginalizing (by integration) over the free parameters L;, ;, allows to take
into account the propagation of the uncertainties expressed using the distribution p(L,, ;) corrected using the
local constraints Hj.

Maximizing the a posteriori distribution p(X|Hi-- - HmK1---Kp,) provides the “Maximum A Posteriori”
(MAP) solution of the problem.

4 Resolution method
We described in the previous section how to express a geometric problem as an integration/optimization problem:
X* :m)?,x[p(X|H1---HmIC1---/Cp)].

In this section, we will present the practical numerical methods we used to solve these two problems.

4.1 Numerical integration method

Integral calculus is the basis of Bayesian inference. Unfortunately, analytic methods for integral evaluation seem
very limited in real-world applications, where integrands may have complex shapes and integration spaces may
have very high dimensionality.

Domain subdivision-based methods (such as trapezoidal or Simpson’s methods) are often used for numerical
integration in low-dimensional spaces. However, these techniques are poorly adapted for high-dimensional cases.

4.1.1 Monte Carlo methods for numerical estimation

Monte Carlo (MC) methods are powerful stochastic simulation techniques that may be applied to solve opti-
mization and numerical integration problems in large dimensional spaces. Since their introduction in the physics
literature in the 1950s, Monte Carlo methods have been at the center of the recent Bayesian revolution in applied
statistics and related fields, including econometrics [Geweke, 1996] and biometrics. Their application in other
fields such as image synthesis [Keller, 1996] and mobile robotics [Dellaert et al., 1999] is more recent.

Principles
The principle of using Monte Carlo methods for numerical integration is to approximate the integral

I:/}mmwwL

by estimating the expectation of the function g(I) under the distribution f(I)
1= [£9() 't = (g0

Suppose we are able to obtain a set of samples {I(V}¥, (d-vectors) from the distribution f(I). We can use
these samples to derive the estimator
A 1)
- § (@)
=7 2,907

Clearly, if the vectors {I{V}Y | are generated from f(l), the variance of the estimator I = L5, g(1D) will

2
decrease as %

7, where o2 is the variance of g:

7 = [F)(a) - 9 .

and ¢ is the expectation of g.
This result is one of the important properties of Monte Carlo methods:
“The accuracy of Monte Carlo estimates is independent of the dimensionality of the integration

space”.

4.1.2 Using MC methods for our application

Using an MC method to estimate the integral (2) requires the following steps.

1. Sample a set of N points {L®}¥ | from the prior distribution p(L) such that the sampled points respect
local equality/inequality constraints (i.e., {H;};~," have the value true).

2. Estimate the integral I(X) using the set {L(}N | of points as follows.

()= 53 pou (B LO)p(Hu | (X, L)

pbo, (Fp(Xv L(i)))p(Hm|FP(X7 L(l)))

Points sampling

The set of N points used to estimate the integral may be sampled in various ways. Since parameters pertaining to
different pose vectors are independent, we can decompose the “state vector” L to m — p components {L;, j, } -
and apply a local sampling algorithm [Geweke, 1996, Neal, 1993]. Using a local sampling algorithm, updating the

state vector L

t) _ (7@ 7(®))
LW = (Liljl ’ Li2j2’ T Likjk’ T Lim—pjmfp)
only requires updating one component Lj;, ;.
(t+1) _ (7O @)) (@)
L - (Li1j1) Li2j2’ ’ Likjk ’ ’ Limfpjmfp)'

N iterations of this procedure give us the set { LM}, which will be used to estimate the integral.

To update a component L;, ;. (a set of parameters pertaining to the same pose vector @, j,), we must take
into account possible dependencies between these parameters. Consequently, we face two problems.

e Candidate point sampling
A candidate L ; is drawn from the distribution p(L;,j,). Direct sampling methods from simple distri-
butions such as uniform distributions and Gaussians are available. If we do not have a direct sampling
method from p(L;, ;) at our disposal, an indirect sampling method must be used. In this work, we chose a
Metropolis sampling algorithm [Geweke, 1996, Neal, 1993].

e Candidate validity checking
Suppose we have a geometric relationship between two geometric entities F; and E;. A geometrical calculus
depending on the type of this relationship allows checking of the constraint Cx(Q;, j,) < 0. If this constraint
is respected (i.e., p(Hk|Xi,j, Liji) = 1), the candidate L ; is accepted, otherwise it is rejected. Figure 2
shows a Face-On-Fuace relationship example.

Optimization of computation time
Using a local sampling method to update the state vector L allows a reduction in the computation time of the

estimates of integrals. If, for a given point L(*), we denote the values of functions F;(X) by FZ-(t) (X), i=1---p,
then the values of F;(X) in the next step Fz-(tH)(X) are obtained by partly updating Fi(t)(X).

Figure 2: The candidate point is rejected because it does not respect the Face-On-Face constraint.

4.2 Optimization method

The optimization method to be chosen for our application must satisfy a set of criteria in relation to the shape
and nature of the function to optimize. The method must:

1. be global, because the function to optimize is often multimodal,

2. allow multiprecision computation of the objective function. Its estimation with high accuracy may require
long computation times,

3. allow parallel implementation to improve efficiency.

For our application, we chose a genetic algorithm that satisfies these criteria. First, we present the general
principles of these algorithms. Then, we discuss the practical problems we faced when using standard genetic
algorithms in our application and give the required improvements.

4.2.1 Principles of Genetic Algorithms

Genetic algorithms (abbreviated GA) are stochastic optimization techniques inspired by the biological evolution of
species. Since their introduction by Holland [Holland, 1975] in the seventies, these techniques have been used for
numerous global optimization problems, thanks to their ease of implementation and their independence of applica-
tion fields. They are widely used in a large variety of domains including artificial intelligence [Grefenstette, 1988]
and robotics [Mazer et al., 1998].

The goal of a GA is to find a global optimum of a given function F over a search space S.

During an initialization phase, a set of points (individuals) are drawn at random from the search space S that
is discretized with a given resolution. This set of points is called a population.

Each individual I is coded by a string of bits. It represents a solution of the problem and its adequacy is
measured by a value F(I).

The fundamental principle of genetic algorithms is: “the better the adequacy of an individual, the larger is
the probability of selecting it for reproduction”. “Genetic operators” are applied to the selected individuals to
generate new ones. For a given size of population, better individuals obtained by reproduction replace initial
ones. This process is iterated until a convergence criterion is reached.

The standard sequential genetic algorithm can be described as follows. First, an initial population is drawn at
random from the search space and the following cycle is then performed (see Fig. 3).

1. Selection: Using the function F, pairs of individuals are selected. The probability of selecting an individual
I grows with the value of F(I) for this individual.

2. Reproduction: Genetic operators are applied to the selected individuals to produce new ones.
3. Evaluation: The values of F' are computed for the new individuals.
4. Replacement: Individuals in the current population are replaced by better new individuals.

Many genetic operators are available. However, the more commonly used are “mutation” and “cross-over”. For
a given pair of individuals, the cross-over operator consists of first cutting the two strings of bits in a randomly
chosen place and then building two new individuals by interchanging the cut parts of the starting strings. The
mutation operator consists of flipping some randomly chosen bits of an individual.

Genetic Algorithm

1011011

1000101 1011001

Selection 1011001 1011011
1011011 1011011 1011111 1000101 1011010

0110011 1111011

1011010

Replacement Reproduction

0011011 > 722 Evaluation
0110111 & 52

110111 > 05
1001000 >

Application domain of the Genetic
Algorithm

Figure 3: Genetic Algorithm iterations.

In this work, we use a population with a constant size of 100 individuals. We discretize the search space
with a resolution of 10~* rad for orientation parameters and of 1073 mm for translation ones. For example,
an orientation parameter that takes a value between 0.0 and 27 rad (discretized with a 10~* rad resolution) is
coded on a 16 bits string (0.0 = 00---0, while 2r = 11---1). A string coding a given configuration is simply

—— —_—

16 16
the concatenation of the strings codings each parameter. For reproduction, we use both the cross-over and the

mutation operators. First, we use the cross-over operator to get an intermediate individual (string). Then, the
mutation operator is applied with a probability of 0.2 on this intermediate individuals to get the final individuals.
In the following, we will use G(X) to denote the objective function p(X|H1 - - Hpm K1 - - - Kp).

4.2.2 Narrowness of the objective function - constraint relaxation

In our applications, the objective function G(X) may have a narrow support (the region where the value is
not null) for very constrained problems. The initialization of the population with random individuals from the
search space may give null values of the function G(X) for most individuals. This will make the evolution of the
algorithm very slow and its behavior will be similar to random exploration.

To deal with this problem, a concept inspired from classical simulated annealing algorithms consists of intro-
ducing a notion of “temperature”. The principle is to first widen the support of the function by changing the
original function to obtain non-null values even for configurations that are not permitted. To do so, we introduce
an additional parameter we call T (for temperature) for the objective function G(X). Our goal is to obtain
another function G*(X) that is smoother and has wider support, with

Jim. GT(X) = G(X).

R
AR

Ahnee AN
l' R T AN
XA LTSS
= s RS
S s
—— S

Figure 4: The distribution corresponding to inequality constraints induced by a Point-On-Face relationship for
a square face at different values of temperature. The left figure shows the original constraints (7' = 0), while the
middle and the right ones show these constraints relaxed at (T' = 50) and (T = 100) respectively.

To widen the support of G(X), all elementary terms (distributions) of G(X) are widened, namely:
e distributions po, (F;(X, L)), where i =1---p.
e inequality constraints p(Hm—p+;|Fj(X, L)), where j =1---p.

For example:

e for a Gaussian distribution:

1 _1(=-w?
z) = e -
1@ = 7,
1 1 _(z=p)?
T 2 2
z) = — ¢ 2lea+T)
S @ V2mo(1+1T)
e for an inequality constraint over the interval [a, b]:
1 ifa<ax<b
f@) = { 0 else
1 ifa<z<b
(z—a)?
) = e"t=aT ifr<a
(z—b)?

e =T otherwise

In the general case, inequality constraints may be more complex. Figure 4 shows the case of a Point-On-Face
inequality constraint for a square face!.

4.2.3 Accuracy of the estimates - multiprecision computing

The second problem we must face is that only an approximation G(X) of G(X) is available, of unknown accuracy.
Using a large number of points to obtain sufficient accuracy may be very expensive in computation time, so that
use of a large number of points in the whole optimization process is inappropriate.

Since the accuracy of the estimate G‘(X) of the objective function depends on the number of points N used
for the estimation, we introduce N as an additional parameter to define a new function G N(X).

Suppose we initialize and run for some cycles a genetic algorithm with G N, (X)) as evaluation function. The
population of this GA is a good initialization for another GA having G N, (X)) as evaluation function with Na > Nj.

IThe formulas we obtain by relaxation are not effective probability distributions, but only “kernels,” because they do not satisfy
the normalization condition f_oo f(z)de = 1. Since we are interested in optimizing the marginal distribution, computing the

normalization factor is not necessary.

4.2.4 General optimization algorithm

In the following, we label the evaluation function (the objective function) by the temperature T' and the number
N of points used for estimation. It will be denoted by G% (X).
Our optimization algorithm may be described by the following three phases.

1. Initialization and initial temperature determination.
2. Reduction of temperature to recreate the original objective function.

3. Augmentation of the number of points to increase the accuracy of the estimates.

Initialization: The population of the GA is initialized at random from the search space. To minimize computing
time in this initialization phase, we use a small number Ny of points to estimate integrals. We propose the following
algorithm as an automatic initialization procedure for the initial temperature Ty, able to adapt to the complexity
of the problem.

INITIALIZATION(GA)
BEGIN
FOR each population[i] € GA’s population DO
REPEAT
population[i] = random(S)
value[i] = G%O (populationli])
if (value[i] == 0.0)
T=T+ AT
UNTIL (value[i]> 0.0)
FEND
Re-evaluate(population)
END
where AT is a small increment value.

Temperature reduction: To obtain the original objective function (7" = 0.0), a possible scheduling procedure
consists of multiplying the temperature, after running the GA for a given number of cycles ncy, by a factor «
(0 < a < 1). A small value for @ may cause the divergence of the algorithm, while a value too close to 1.0 may
considerably increase the computation time. In this work, the value of o has been experimentally fixed to 0.8.
We can summarize the proposed algorithm as follows.

TEMP_REDUCTION(GA)
BEGIN
WHILE (T > T¢) DO
FOR i=1 TO nc1 DO

Run(GA)
FEND
T=T%*a«
WEND
T =0.0

Re-evaluate(population)
END
where T¢ is a small threshold value.

Augmenting the number of points: At the end of the temperature reduction phase, the population may
contain several possible solutions for the problem. To decide between these solutions, we must increase the
accuracy of the estimates. One approach is to multiply N, after running the GA for a given number of cycles
nce, by a factor 8 (8 > 1) so that the variance of the estimate is divided by £:

1
Var(G%*N (X)) = BV@T(G%, (X)).
We can describe this phase by the following algorithm.

10

N_POINTS_AUGMENTATION(GA)
BEGIN
WHILE (N < Npmaz) DO
FOR i=1 TO nce DO

Run(GA)
FEND
N=N*g3

WEND
END
where Nz is the number of points that allows convergence of the estimates C;'(])\, (X) for all
individuals of the population.

In this work, the value of 8 has been fixed to 2.

5 Overview of the implementation

In this section, we present an overview of the implementation of the CAD modeler that follows the principles
presented above.

5.1 Specification language

A workeell is constructed by evaluating a script file. This script contains a set of Lisp-like instructions used to:
e create geometric entities,
e create parts,
e describe probabilistic constraints between parts.

After evaluation of the script, a graphic model of the cell is constructed and passed to a 3D viewer.

5.1.1 Geometric entities creation

Geometric entities creation uses a specialized method for each entity. When creating an entity, a frame attached
to it is automatically created. The following methods are used:

o New_Vertex(x, y)

e New_Edge(vertexl, vertex2)
o New_Face(list_of_vertices)

o New_Sphere(center, radius)

e New_Cylinder(center, radius, direction, length)

5.1.2 Parts creation

A part is a set (possibly empty when only the attached frame is modeled) of geometric entities. This set of entities
is given as a parameter when creating the part. An additional graphic object can be added to give a realistic
graphic representation. We use the following method.

e New_Part(list_of_geom_entities, add_graph_obj)

5.1.3 Probabilistic kinematic links description

Creating a probabilistic kinematic link between two frames or two geometric entities uses the following instructions
to create the probabilistic kinematic link and use it to attach entities.

e New_Link(status_vector, distribution)

11

ile Edit Display Views Windows Aide

856 @
MR e—e—————————————— T Vorl |

0.628318)

= = =
.
4
:
e
'

Change World Variables
Restaure Initial Variables

Figure 5: A screen copy of our CAD modeler. It shows an application of our method: the problem of positioning
a robot arm to allow maximum accuracy when mounting a car wheel.

o Attach(parent_item, child_item, link)

If parent_item and child_item are geometric entities (instead of simple frames), the corresponding equality
and inequality constraints are automatically added by the system.

5.2 Graphics system and geometric uncertainties visualization

The use of graphic support has an indisputable interest for 3D geometric workcells modeling and for appreciation
of the calculated solutions for a given problem. Moreover, it may allow in our case, a visualization of geometric
uncertainties and make their perception easier.

5.2.1 Graphics system

A workeell is constructed by evaluating a script containing a set of instructions, as described above. Besides the
construction of the internal representation of the workcell, the evaluation of the script constructs a graphic model
corresponding of this workcell and passes it as a parameter to the invoked 3D viewer (see Fig. 5).

The implemented 3D-visualization system is based on the Quickdraw3D graphic library developed and proposed
by Apple for MacOS and Windows 95/98 /NT platforms. This library proposes primitives for creating, positioning
and displacement of geometric features. It also proposes an integrated 3D viewer that can be easily invoked from
any application. The application must construct a graphic group to be viewed and pass it as a parameter when
invoking the viewer.

5.2.2 Geometric uncertainties visualization

Since the relative poses of parts are described as probability distributions instead of single scalar values, we are
interested in developing a graphic representation that takes account of this probabilistic aspect of poses on a
display screen.

12

Figure 6: Kinematics inversion example using two Stdubli Rx90 arms.

The proposed method is to simulate uncertainties in the poses of parts. The principle is to use a Monte Carlo
simulation by sampling the values of the parameters of the poses in the workcell from probability distributions
over these parameters. Instead of displaying a part in a fixed pose in the graphic scene, the part is displayed,
with a given frequency, in the poses obtained by this sampling. If the frequency of sampling is high enough, this
will give a good visual perception of the geometric uncertainties in the model of the workcell.

This wvisualization of uncertainties allows a more concrete perception of their propagation in a given configura-
tion. In particular, it allows graphic comparison of two different solutions for a given geometric problem.

6 A kinematics inversion example

In this section we describe how to use our CAD modeler for concrete problems. We present in detail a kinematics
inversion problem under geometric uncertainties.

6.1 Problem description

Using two Staubli Rx90 robot arms with six revolute joints, we are interested in placing two prismatic parts one
against the other. The only constraint is that a face of the first part will be in a Face-On-Face relationship with
a face of the second.

The two arms are modeled as a set of parts attached to each other using probabilistic kinematic links. We
assume that the more significant uncertainties are on zero positions of the joints. The two parts are also attached
to arms’ end effectors using probabilistic kinematic links. The added constraint we wish to satisfy to solve the
problem is represented by a link between the two faces to place in Face-On-Fuace relationship. We use for this
link three Gaussians on the three constrained parameters ¢, r, and r, with zeros as mean values and 0.5 mm,
0.01 rad and 0.01 rad respectively as standard deviations. Figure 6 shows the two arms, while Fig. 7 gives the
corresponding kinematic graph.

We suppose in this example that the zero position uncertainties of the arm on the right of Fig. 6 (Right_Arm)
are five times more important than the ones of the arm on the left (Left_Arm) (for each joint, we suppose a
Gaussian distribution on the zero position with 0.01 rad as the standard deviation for Left_Arm and with 0.05
rad for Right_Arm). Our aim is to comment qualitatively on the solution obtained and to show the importance
of taking uncertainties propagation into account when choosing a solution.

13

FACE |
RED-CUBE BLUE-CUBE

GRIPPER 2

GRIPPER |

AXIS 11 AXIS 12

TABLE-FACE

Figure 7: The corresponding kinematic graph.

Figure 8: The solution obtained by the system.

6.2 Results

Figure 8 shows the solution obtained by the system. This solution gives maximal precision for the required
Face-On-Face relationship because:

1. Right_Arm (the less accurate) is coiled to minimize the propagation of the uncertainties on its zero positions.

2. Rotation axes are perpendicular to the common normal of the two faces.

Table 1 summarizes the problem complexity and the system performances for this problem using a PowerPC
G3/400 machine.

6.3 Discussion

This example shows how the proposed method takes geometric uncertainties into account in a general and homoge-
neous way. No assumptions have been made, either on the uncertainties models (shapes of the used distributions),
or on the linearity of the model or the possibility of it being linearized. It also shows how possible redundancy of
the system relating to the required task is used to find the most accurate solution.

14

Integration space dimension 50
Optimization space dimension 12
Number of cycles 1
Number of frames 28
Number of inequality constraints 16
Computation time (seconds) 13

Table 1: Some parameters summarizing the problem complexity and the system performances for this kinematics
inversion problem.

Figure 9: A parallelepiped pose and dimensions calibration problem using contact relationships.

7 A calibration example

In this section, we present a calibration problem.

7.1 Problem description

The purpose of this example is to calibrate the pose and the size of a 3-D part. More precisely, we are interested in
identifying the parameters of the pose of a parallelepiped on a table and the three dimensions of this parallelepiped
(see Fig. 9).

The experimental protocol is as follows. For each measurement, a six DOF arm is moved to a configuration
that allows obtaining a contact between a touch sensor mounted on the end effector of the arm and a face of the
parallelepiped. A set of N contacts between the touch sensor and the faces will give the set of N measurements
(configurations that allow contact) we will use for calibration (see Fig. 10). The geometric model of the arm is
the same used for Left_Arm in the previous example.

We suppose that the parallelepiped lies on the table. Consequently, we have to identify only the z and y
position parameters and the « orientation parameter. For the size of the parallelepiped, we have to identify the
parameters sz, sy and sz representing distances between each pair of parallel faces. We used for this example a
set of ten contacts. For each face (except for the inferior face which lies in the table), two measurements have
been taken. Figure 11 shows the contact points and the corresponding faces to put back in contact to solve this
calibration problem, while Fig. 12 gives the kinematic graph corresponding to this problem.

15

Figure 10: The set of contacts to use for calibration.

Figure 11: Contact points and the parallelepiped faces to put back in contact to solve the calibration problem.

7.2 Results

The a priori distribution p(X) on the search space X = (z,y, a, s, sy, sz)T expresses our prior knowledge on the

parameters to be identified. For this example, we have assumed an uniform distribution p(X) to express the fact
that no initial estimation of these parameters is available.

We summarize the problem complexity and the system performances for this problem using a PowerPC G3/400
machine in Tab. 2.

The simulated contacts have been taken at non-null distances between the touch sensor and the parallelepiped
faces. Table 3 gives error values for the ten measurements. We have to underline that all these contact errors
have positive values because the touch sensor cannot overlap the parallelepiped.

Table 4 gives simulation values of the parameters to calibrate and the values obtained after calibration.

7.3 Discussion

This example presents an application of our method for parameter identification problems. We show especially
that using this method allows:

16

FACE-FRONT

FACE-DOWN

Figure 12: The kinematic graph for the calibration problem.

Integration space dimension 30
Optimization space dimension 6
Number of cycles 10
Number of frames 77
Inequality constraints number 40
Computation time (seconds) 23

Table 2: Some parameters summarizing the problem complexity and the system performances for this calibration
problem.

8

e To take into account prior information on the parameters to estimate.

e To take into account, for each measurement (contact), its accuracy by propagating the uncertainties of the

arm model. This allows an implicit weighting of these measurements (the more accurate the measurement,
the more importance it has in the calibration process).

To take into account prior information on the used measurement tool. In this particular example where
measurements are contact relationships, we have expressed the non-overlap phenomenon using a non-

symmetrical distribution
2

1
2

2 T .
e “7¢c ift,>0
p(tz) = Vanoe
0 else

where o, was 0.5 mm.

Conclusion and Future Research

We have presented a generic approach for geometric problem specification and resolution using a Bayesian frame-
work. We have shown how a given problem is first represented as a probabilistic kinematic graph and then
expressed as an integration/optimization problem. Appropriate numerical algorithms used to apply this method-
ology are also described. For generality, no assumptions have been made on the shapes of distributions or on the
amplitudes of uncertainties.

Numerous geometric problems have been specified and resolved using our system. We have presented in this

paper a kinematics inversion under uncertainties problem and a part pose and shape calibration.

Experimental results made on our system have demonstrated the effectiveness, the robustness, and the ho-

mogeneity of representation of our approach. However, additional studies are required to improve both the
integration and the optimization algorithms.

17

|| Contact 1 | Contact 2 | Contact 3 | Contact 4 | Contact 5

| |
| Simulated errors (mm) || 0.677 | 0.567 | 0.303 | 0.792 | 0.724 |
[[[Contact 6 | Contact 7 | Contact 8 [Contact 9 [Contact 10 |
| Simulated errors (mm) || 0.791 | 0.883 | 0.858 | 0.383 | 0.111 |

Table 3: Error values used when simulating contacts.

| || z (mm) | y (mm) | a (rad) | sz (mm) | sy (mm) | sz (mm) |
[Simulation values [[900.000 [-900.000 [0.7854 [300.000 | 300.000 [300.000 |
| Calibration results [| 900.195 | -900.000 | 0.7853 | 299.238 | 299.238 | 299.238 |

Table 4: Initial values (simulation values) of the parameters to calibrate and calibration results.

For the integration problem, numerical integration can be avoided when the integrand is a product of generalized
normals (Dirac delta functions and Gaussians) and when the model is linear or can be linearized (errors are small
enough). The optimization algorithm may also be improved by using a local derivative-based method after the
convergence of our genetic algorithm.

Future work will aim at allowing the use of high-level sensors such as vision-based ones. We are also considering
extending our system so that it can include non-geometrical parameters (inertial parameters for example) in the
problem specification.

References

[Alami and Simeon, 1994] Alami, R. and Simeon, T. (1994). Planning robust motion strategies for mobile robots.
In Proc. of the IEEFE Int. Conf. on Robotics and Automation, volume 2, pages 1312-1318, San Diego, California.

[Bar-Shalom and Fortmann, 1988] Bar-Shalom, Y. and Fortmann, T. E. (1988). Tracking and Data Association.
Academic Press.

[Bessiere et al., 1998] Bessiere, P., Dedieu, E., Lebeltel, O., Mazer, E., and Mekhnacha, K. (1998). Interprétation
ou description (I): Proposition pour une théorie probabiliste des systémes cognitifs sensori-moteurs. Intellectica,
26-27:257-311.

[Dellaert et al., 1999] Dellaert, F., Fox, D., Burgard, W., and Thrun, S. (1999). Monte Carlo localization for
mobile robots. In Proc. of the IEEFE Int. Conf. on Robotics and Automation, Detroit, MI.

[Geweke, 1996] Geweke, J. (1996). Monte Carlo simulation and numerical integration. In Amman, H., Kendrick,
D., and Rust, J., editors, Handbook of Computational Economics, volume 13, pages 731-800. Elsevier North-
Holland, Amsterdam.

[Gondran and Minoux, 1990] Gondran, M. and Minoux, M. (1990). Graphes et Algorithmes. Eyrolle, Paris.

[Grefenstette, 1988] Grefenstette, J. J. (1988). Credit assignment in rule discovery systems based on genetic
algorithms. Machine Learning, 3:225-245.

[Holland, 1975] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, MI.

[Jaakkola and Jordan, 1999] Jaakkola, T. and Jordan, M. (1999). Variational probabilistic inference and the
QMR-DT network. J. Artif. Intellig. Res. (JAIR), 10:291-322.

[Jaynes, 1996] Jaynes, E. T. (1996). Probability Theory - The Logic of Science. Unfinished book publicly available
at http://bayes.wustl.edu.

[Keller, 1996] Keller, A. (1996). The fast calculation of form factors using low discrepancy point sequence. In
Proc. of the 12th Spring Conf. on Computer Graphics, pages 195-204, Bratislava.

18

[Laplace, 1774] Laplace, P. S. (1774). Mémoire sur la probabilité de causes par les évenements. Mémoire de
I’Académie Royale des Sciences, 6:621-656.

[Lozano-Perez, 1987] Lozano-Perez, T. (1987). A simple motion-planning algorithm for general robot manipula-
tors. IEEE J. of Robotics and Automation, 3(3):224-238.

[Mazer et al., 1998] Mazer, E., Ahuactzin, J., and Bessiere, P. (1998). The Ariadne’s Clew algorithm. J. Artif.
Intellig. Res. (JAIR), 9:295-316.

[Mekhnacha, 1999] Mekhnacha, K. (1999). Méthodes probabilistes Bayesiennes pour la prise en compte des incer-
titudes géométriques: application a la CAO-robotique. These de doctorat, Inst. Nat. Polytechnique de Grenoble,
Grenoble, France.

[Mekhnacha et al., 2000] Mekhnacha, K., Mazer, E., and Bessiere, P. (2000). A Bayesian CAD system for robotic
applications. In Proc. of the IASTED Int. Conf. on Modelling and Simulation, pages 527534, Pittsburgh, PA,
USA.

[Moravec, 1988] Moravec, H. P. (1988). Sensor fusion in certainty grids for mobile robots. AT Magazine, 9(2):61—
74.

[Neal, 1993] Neal, R. M. (1993). Probabilistic inference using Markov Chain Monte Carlo methods. Research
Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto.

[Owen, 1996] Owen, J. C. (1996). Constraints on simple geometry in two and three dimensions. Int. J. of
Computational Geometry and Applications, 6(4):421-434.

[Presse and Gautier, 1992] Presse, C. and Gautier, M. (1992). Bayesian estimation of inertial parameters of
robots. In Proc. of the IEEE Int. Conf. on Robotics and Automation, volume 1, pages 364-369, Nice, France.

[Puget, 1989] Puget, P. (1989). Vérification-Correction de programme pour la prise en compte des incertitudes
en programmation automatique des robots. These de doctorat, Inst. Nat. Polytechnique de Grenoble, Grenoble,
France.

[Sanderson, 1997] Sanderson, A. C. (1997). Assemblability based on maximum likelihood configuration of toler-
ances. In Proc. of the IEEE Symposium on Assembly and Task Planning, Marina del Rey, CA.

[Taylor, 1976] Taylor, R. (1976). A synthesis of manipulator control programs from task-level specifications. Ph.d
thesis, Stanford University, Computer Science Department.

[Thrun, 1998] Thrun, S. (1998). Bayesian landmark learning for mobile robot localization. Machine Learning,
33(1):41-76.

[Weiss and Adelson, 1998] Weiss, Y. and Adelson, E. H. (1998). Slow and smooth: a Bayesian theory for the
combination of local motion signals in human vision. Research Report Al Memo 1624, MIT.

[Zhang and Augeras, 1992] Zhang, Z. and Augeras, O. (1992). 8D Dynamic Scene Analysis: A Stereo Based
Approach. Springer, Berlin, Heidelberg.

19

Proceedings of the 2004 IEEE
International Conference on Robotics & Automation
New Orleans, LA « April 2004

Hierarchies of probabilistic models of navigation:
the Bayesian Map and the Abstraction operator

Julien Diard, Pierre Bessiere and Emmanuel Mazer
Laboratoire GRAVIR / IMAG — CNRS
INRIA Rhone-Alpes, 655 avenue de I’Europe
38330 Montbonnot Saint Martin FRANCE
Julien.Diard @free.fr

Abstract— This paper presents a new method for probabilistic
modeling of space, called the Bayesian Map formalism. It offers
a generalization of some common approaches found in the
literature, as it does not constrain the dependency structure
of the probabilistic model. The formalism allows incremental
building of hierarchies of models, by the use of the Abstraction
operator. In the resulting hierarchy, localization in the high level
model is based on probabilistic competition of the lower level
models. Experimental results validate the concept, and hint at
its usefulness for large scale scenarios.

I. INTRODUCTION

In robotics, modeling the environment that a robot has to
face in a navigation task is a crucial problem, that has received
a lot of attention in the community. The most promising
approaches rely on the probability calculus, especially for its
capacity to handle incomplete models and uncertain informa-
tion. These approaches include — but are far from limited
to — Kalman Filters [1], Markov Localization models [2],
(Partially or Fully) Observable Markov Decision Processes [3],
and Hidden Markov Models [4]. We will here assume that the
reader has some familiarity with these approaches.

In this domain of probabilistic modeling for robotics, hier-
archical solutions are currently flourishing. The more active
domain in this regard is decision theoretic planning: one
can find variants of MDPs that accommodate hierarchies or
that select automatically the partition of the state-space (see
for instance [5], [6], or browse through the references in
[7]). More exceptionally, one can find hierarchical POMDPs,
as in [7], which is arguably the work that bears the most
resemblance to the one presented here, although we do not
use reward functions in this work. The current work can
also be related to Thrun’s object mapping paradigm [8], in
particular concerning the aim of transferring some of the
knowledge the programmer has about the task, to the robot.
Some hierarchical approaches outside of the MDP community
include Hierarchical HMMs and their variants (see [9] and
references therein), which, unfortunately, rely on the notion
of final state of the automata. Another class of approaches
relies on the extraction of a graph from a probabilistic model,
like for example a Markov Localization model [10], or a
MDP [11]. Using such deterministic notions is inconvenient
in a purely probabilistic approach, as we are pursuing here.
Indeed, the current work uses probabilities in all layers of

0-7803-8232-3/04/$17.00 ©2004 |IEEE

the hierarchy of representations, allowing us to propagate
and handle uncertainties in a uniform and formally coherent
manner.

Moreover, the main philosophy used by all the previous
approaches is to try to extract, from a very complex but
intractable model, a hierarchy of smaller models. Of course,
automatically selecting the relevant decomposition of a prob-
lem into sub-problems is quite a challenge — this challenge
being far from restricted to the domain of navigation for robots
facing uncertainties.

We pursue here an alternate route, investigating how, start-
ing from a set of simple models, one can combine them for
building more complex models. The goal of this paper is
therefore to present a new formalism for building models of
the space in which a robot has to navigate (the Bayesian Map
model), and a method for combining such maps together in a
hierarchical manner (the Abstraction operator).

This formalism allows for a new representation of space, in
which the final program is built upon many imbricate models,
each of them deeply rooted into lower level sensorimotor
relationships. Such hierarchies of sensorimotor models seem
relevant to biologically inspired models, as it appears that
no single metric model can account alone for large scale
navigation capacities of animals (see [12], [13]).

We will also argue that our approach draws away from
the usual characteristics of the common models of space
(Section II-C), and that it is also more general than these
models (Sections III and VI). For brevity, this paper will
discuss neither of the learning methods that can be included
into Bayesian Maps (mapping process), nor of another operator
for merging Bayesian Maps (the Superposition operator).
Preliminary work about these issues and all the details missing
in the current paper can be found in Diard’s Ph.D. thesis [14].

The rest of this paper is organized as follows. Section II
presents the Bayesian Robot Programming methodology, and
discusses some of its characteristics. Sections III and IV
will quickly define our notion of Bayesian Map, and the
Abstraction operator, respectively. The paper concludes on the
presentation of experimental results, Section V.

II. BAYESIAN ROBOT PROGRAMMING

The work we present here is based on BRP, a Bayesian
Robot Programming methodology. We summarize it here, but

3837

Pertinent variables
Decomposition

Pro Desc Spec (m) Forms Parametric OR
g ° 1 Questions to Programs
Identification based on data (d)
Question
Fig. 1. Structure of a Bayesian Robotic Program.

still invite the reader to refer to [15] for all the details.

A. Definition

In the BRP formalism, a bayesian robotic program is a
structure (see Fig. 1) made of two components.

The first is a declarative component, where the user defines
a description. The purpose of a description is to specify a
method to compute a joint distribution over a set of relevant
variables {X;, Xo,...,X,,}, given a set of experimental data
0 and preliminary knowledge 7. This joint distribution is
denoted P(X; X3 ... X,, | § m). To specify this distribution,
the programmer first lists the pertinent variables (and defines
their domains), then decomposes the joint distribution as a
product of simpler terms (possibly stating conditional inde-
pendence hypotheses so as to simplify the model and/or the
computations), and finally, assigns forms to each term of the
selected product (these forms can be parametric forms, or re-
cursive questions to other bayesian programs). If there are free
parameters in the parametric forms, they have to be assessed.
They can be given by the programmer (a priori programming)
or computed on the basis of a learning mechanism defined by
the programmer and some experimental data .

The second component is of a procedural nature, and
consists of using the previously defined description with a
question, i.e. computing a probability distribution of the form
P(Searched | Known). Answering a “question” consists
in deciding a value for the variable Searched according to
P(Searched | Known). Different decision policies are pos-
sible, in our robotic experiments we usually choose to draw a
value at random according to that distribution. It is well known
that general Bayesian inference is a very difficult problem,
which may be practically intractable. But, as this paper is
mainly concerned with modeling issues, we will assume that
the inference problems are solved and implemented in an
efficient manner by the programmer.

B. Example

Since the BRP formalism is only based on the inference
rules needed for probability calculus, it is very general. Indeed,
a very wide class of probabilistic models found in the literature
can be rewritten as BRP programs, as is shown in [16]. For
example, we can rewrite the Markov Localization model into
the BRP formalism. The ML model is basically a Hidden
Markov Model with an additional action variable. Recall that
a HMM is basically the decomposition P(O; S; Si—1) =
P(S¢—1)P(St | St—1)P(O: | St), where O; is a perception

Pertinent variables

Oy : perception variable

S; : discrete location variable at time ¢

S¢—1 : discrete location variable at time ¢ — 1

A; : action variable
Decomposition

P(A¢ St Si—1 Oy) =

P(S; | At Si—1)P(Oy | St)P(A)P(Si-1)

Forms: usually, matrices or particles)
Identification: any
Question: localization P(Sy | Ao...A: Og...0y)

Program
Description
Specification

Fig. 2. The Markov Localization definition expressed in the BRP formalism.

variable, S; and S;_; are location variables at time ¢ and ¢ — 1.
Starting from this structure, the action variable A; is used to
refine the transition model P(S; | S;—1) into P(S; | A Si—1).
The resulting BRP model for Markov Localization is shown
Fig. 2.

C. BRP vs. other models

Let us now develop some remarks that arise from the
comparison between the use of the BRP formalism and some
aspects of the more common models of the representation of
space (see Section I). In particular, we now focus on solving
navigation tasks using BRP programs.

The first remark relies on the fact that, in BRP, a form
appearing in a description ¢! can be a question to another
description c2. This allows the programmer to decompose a
robotic program into sub-programs, as in structured computer
programming. Therefore, the first step for solving a navigation
task is to imagine, or to copy from living beings (see [12],
[13]), intermediary levels of descriptions or skills, that are
relevant. This is somewhat different from most probabilistic
models of space, that only rely on one level of description,
i.e. that try to represent the environment using only one type
of features. Forms being questions to other descriptions is a
key feature of our Abstraction operator (see Section IV).

The second remark is that the first step when designing a
BRP description is the choice of variables. When dealing with
the representation of space, one usually selects a perception
variable, an action variable, and a location (or state) variable.
Therefore, the programmer has to choose a set of locations
that are relevant for solving the task at hand, in the class
of environments the robot will likely face. The choice of the
nature of these locations (metric or topologic, or dense or
sparse, for instance) should come as a consequence of these
considerations. This, again, somewhat differs from existing
approaches, where the choice of model (Markov Localization
or Kalman Filter, for instance), is rather a choice of a de-
pendency structure or form definition, that implies properties
on the choice of variables (Kalman Filters are well suited to
continuous variables, for instance). In contrast, in the Bayesian
Map formalism, we will not put constraints on the choice of
decomposition or forms: the programmer will have all latitude
left for choosing the semantic of the location variable that

3838

solves his navigation task (the constraints on the choice of
variables will merely be syntactic).

The third and final remark is that, in BRP, the description
phase is considered independent of the utilization phase. This
contrasts with most probabilistic models, where the terms
appearing in the decomposition are usually chosen for a
particular inference. For example, action or transition models,
which can be difficult to assess when the variables are not
chosen well, are still very common because they are easily
integrated into the location estimation. In our Bayesian Map
formalism, we will constraint what maps are used for (the
questions), but not how the knowledge necessary for using
the map is structured (the decomposition).

III. BAYESIAN MAPS

A Bayesian Map c is a description that defines a joint
distribution P(P L; Ly A | ¢), where:

« P is a perception variable (the robot reads its values from

physical sensors or lower level variables),

e L; is a location variable at time t,

e L is a variable having the same domain than L;, but at

time ¢’ (without loss of generality, let us assume ¢’ > t),
e and A is an action variable (the robot writes commands
on this variable).
For simplicity, we will assume here that all these variables
have finite domains.

The choice of decomposition is not constrained: any prob-
abilistic dependency structure can therefore be chosen here.
Finally, the definition of forms and the learning mechanism
(if any) are not constrained, either.

For a Bayesian Map to be useable in practice, we need
the description to be rich enough to generate behaviors. We
call elementary behavior any question of the form P(A* | X),
where A’ is a subset of A4, and X a subset of the other variables
of the map (i.e., not in A%). A behavior can be not elementary,
for example if it is a sequence of elementary behaviors, or, in
more general terms, if it is based on elementary behaviors and
some other knowledge (which need not be expressed in terms
of maps).

For a Bayesian Map to be interesting, we will also require
that it generates several behaviors — otherwise, defining just
a single behavior instead of a map is enough. Such a map
is therefore a resource, based on a location variable relevant
enough to solve a class of tasks: this internal model of the
world can be reified.

A “guide” one can use to “make sure” that a given map will
generate useful behaviors, is to check if the map answers in a
relevant manner the three questions P(L, | P) (localization),
P(Ly | A Ly) (prediction) and P(A | Ly Ly) (control).

By “relevant manner”, we mean that these distributions
have to be informative, in the sense that their entropy is “far
enough” of its maximum (i. e. the distribution is different from
a uniform distribution). This constraint is not formally well
defined, but it seems intuitive to focus on these three questions.
Indeed, the skills of localization, prediction and control are
well identified in the literature as means to generate behaviors.

Pertinent variables:
P : perception variable
L; : location variable at time ¢
Ly : location variable at time t', ¢’ > ¢
A : action variable
Decomposition: any
Parametric forms: any
Identification: any
Questions (required):
elementary behaviors: P(A* | X), with A* C A,
X c ({P7 LtaLt’7A} \ A’L)
Questions (guides):
localization: P(L; | P)
prediction: P(Ly | A L)
control: P(A | Ly L)

Description
Specification

Program

Fig. 3. The Bayesian Map model definition expressed in the BRP formalism.

Checking that the answers to these questions are informative
is a first step to evaluate the quality of a Bayesian Map with
respect to solving a given task.

Fig. 3 is a summary of the definition of the Bayesian Map
formalism.

A. Generality of the Bayesian Map formalism

We now invite the reader to verify that the Markov Localiza-
tion model is indeed a special case of the Bayesian Map model
by comparing Fig. 2 and Fig. 3. Recall that Kalman Filters and
Particle Filters are special cases of Markov Localization, as
they add hypotheses over the choice of dependency structure
made by the Markov Localization model. This implies that
Kalman Filters and Particle Filters also are special cases of
Bayesian Maps.

Bayesian Maps can therefore accommodate many different
forms, depending on the needs or information at hand: for
example, one Bayesian Map can be structured like a real
valued Kalman Filter for tracking the angle and distance to
some feature when it is available. If that feature is not present,
or in cases where the linearity hypotheses fail, we can use
another Bayesian Map, which need not be a Kalman Filter
(for example, based on a symbolic variable).

IV. ABSTRACTION OF BAYESIAN MAPS

Having defined the Bayesian Map concept, we now turn to
defining operators for putting Bayesian Maps together. The
one we present here is called the Abstraction of maps, it is
defined Fig. 4, and commented in the rest of this section.

As stressed above, in a Bayesian Map, the semantics of the
location variable can be very diverse. The main idea behind
the abstraction operator is to build a Bayesian Map ¢ whose
different locations are other Bayesian Maps c*,c?, ..., c". The
location variable of the abstract map will therefore take n
possible symbolic values, one for each underlying map c'.
Each of these maps will be “nested” in the higher level abstract
map, which justifies the use of the term ‘“hierarchy” in our
work. Recall that Bayesian Maps are designed for generating
behaviors. Let us note a',a?,...,a* the k behaviors defined

3839

Pertinent variables:

P=N", (P"ANLyALy NAY)

Li:Dr, ={c',,....,c"} ko, =n

Ly Dy, = {c',c?,.. 'Yk, =n

A:Da={a,az2,...,ar},ka =k

Decomposition:

PP Ly Ly A) =
P(Lo) [T, P(P' L
P(Ly)P(A | Ly Ly)

Parametric forms:
P(L:) = Uniform
P(P LI Ly A" [Li=d)
if c = ¢" then P(P* L}
else Uniform
P(L4) = Uniform
P(A| Ly Ly) = Table
Identification:
a priori programming or learning of P(A | Ly L)
Questions:
P(L: | P) =
P(Ly | AL) =
PA|Li Ly) =

i AT Ly)

Description
Specification

Program

v A)

AT, P(P' L Ly, A" | Ly)
AP(A| L Ly)
P(A | Ly Ly).

Fig. 4. The abstraction operator definition expressed as a Bayesian Map.

in the n underlying maps. In the abstract map, these behaviors
can be used for linking the locations ¢!. The action variable
of the abstract map will therefore take k possible symbolic
values, one for each behavior of the underlying maps. In order
to build an abstract map having n locations, the programmer
will have to have previously defined n lower level maps, which
generate k behaviors. The numbers n and k are therefore
small, and so the abstract map deals with a small internal
space, having retained of each underlying map only a symbol,
and having “forgotten” all their details. This justifies the
use of the name “abstraction” for this operator. But this
“summary mechanism” has yet to be described: that is what
the perception variable P of the abstract map will be used
for, as it will be the list of all the variables appearing in the
underlying maps: P = P' L}, L}, Al P" Ly L%, A"

Given the four variables of the abstract map, we define its
joint distribution with the following decomposition:

P(P L; Ly A)

— P(L)[[P(P' Li Liy A'| L)P(Ly)P(A | Ly L),
i=1

In this decomposition, P(L;) and P(Ly) are defined
as uniform distributions. All the terms of the form
P(P' L Li, A* | [L; = c]) are defined as follows: when
¢ # ¢, the probabilistic dependency between the variables
Pt Li, L, A of the map ¢’ is supposed unknown, therefore
defined by a uniform distribution. Whereas when ¢ = ¢, this
dependency is exactly what the map ¢’ defines. Therefore this
term is a question to the description ¢, but a question that
includes the whole sub-description by asking for the joint
distribution it defines. Since the last term, P(A | L; L),
only includes symbolic variables that have a small number of

values, it makes sense to define it as a table, which can be
easily a priori programmed or learned experimentally.

The abstract Bayesian Map is now fully defined, and, given
n underlying maps, can be automatically built. The last step is
to verify that it generates useful behaviors. We will examine
the guide questions of localization, prediction and control.

The localization question leads to the following inference
(derivation omitted): P(L; | P) o< [, P(P" L} L}, A" | L,).
The interpretation of this result will be explained with an
example, Section V. The derivations for solving the prediction
P(Ly | A L;) and control P(A | L; Ly) questions are also
straightforward, and given Fig. 4.

Recall that the final goal of any Bayesian Map is to provide
behaviors. In the abstract map, this is done by answering a
question like P(A | [Ly = ¢!] [P = p]): what is the probability
distribution over lower level behaviors, knowing all values p of
the variables of the lower level, and knowing that we want to
“go to map c¢'?” Answering this question thus allows selecting
the most relevant underlying behavior to reach a given high
level goal. The computation is as follows:

P(A| Ly P)

1 n o
= 7 <HP<PZ L L A‘IL») P(A| L Ly).
Ly

i=1

This computation includes the localization question, to weigh
the probabilities given by the control model P(A | Ly Ly).
In other words, the distribution over the action variable A
includes all localization uncertainties. Each underlying model
is used, even when the robot is located at a physical location
that this model is not made for. As a direct consequence,
there is no need to decide what map the robot is in, or
to switch from map to map: the computation considers all
possibilities and weighs them according to their (localization)
probabilities. Therefore the underlying maps need not be
“mutually exclusive” in a geographical sense.

V. EXPERIMENTAL VALIDATION

We report here an experiment made on the well-known
Koala mobile robot platform (K-team company). In order to
keep as much control as possible over our experiments and
the different effects we observe, we simplify the sensorimotor
system and its environment. We only use the 16 proximeters
Pz = Pxo A ...\ Pzi5 of our robot, and keep two degrees
of freedom of motor control, via the rotation and translation
speed Vrot and Virans. The environment we use is a 5 m X
5 m area made of movable planks (see a typical configuration
we use Fig. 5). The goal of this experiment is to solve a
navigation task: we want the robot to be able to go hide in
any corner, as if the empty space in the middle of the area
were dangerous.

The first programming step is to analyze this task into sub-
tasks. We particularize three situations that are relevant for
solving the task: the robot can either be near a wall, and it
should follow it in order to reach the nearest corner, or the
robot can be in a corner, and it should stop, or finally it could

3840

be in empty space, and should therefore go straight, so as to
leave the exposed area as quickly as possible.

A. Low level Bayesian Maps

Given this analysis, the second programming step is to
define one Bayesian Map for each of the three situations. They
all use the same perception variable P = Px and the same
action variable A = Vrot A Vitrans.

The first map, ¢?!, describes how to navigate in pres-
ence of a single wall, using a location variable L; =
0 N Dist: the phenomenon “wall” is summed up by an
angle 6 and a distance Dist. Therefore, ¢ defines
P(Pz 0; Dist; 0y Disty Vrot Virans | ¢®). We have
implemented this map using 12 possible angle values, and
3 different distances. This lead to a compact model, yet
accurate enough to solve the sub-tasks we wanted to solve.
The dependency structure we choose is (c”® on right hand
sides omitted):

P(Pzx 0y Disty 0y Disty Vrot Virans)
= P(0, Dist,) [[P(Px; | 6 Dist,)P(0y Disty)

P(VT‘Ot | 9t D?:Stt Qt' D’LStt/)
P(Vitrans | 0; Dist, 0y Disty).

P(6; Dist;) and P(8y Disty) are uniform probability dis-
tributions. Each term of the form P(Pz; | 6; Dist;) is a
set of Gaussians, that were identified experimentally, by a
supervised learning phase: we physically put the robot in
all 36 possible situations, and recorded proximeter values so
as to compute experimental means and standard deviations.
Finally, the two control terms P(Vrot | 6, Dist, 6y Disty)
and P(Vitrans | 6; Disty 0y Disty) were programmed “by
hand”: given the current angle and distance, and the angle and
distance to be reached, what should be the motor commands?

This map successfully solves navigation tasks like
“follow-wall-right”, “follow-wall-left”, “go-away-from-wall”,
“stop”, using behaviors of the same name. For example,
“follow-wall-right” is defined by the probabilistic question
P(Vrot Virans | Px [Ly = (90,1)]): compute the dis-
tribution on motor variables knowing the sensory input and
knowing that the location to reach is § = 90 °, Dist = 1
(wall on the right at medium distance).

This map is an instance where a Kalman Filter based
Bayesian Map could have been used instead: for example, if
we had required more accuracy on the angle and distance to
the wall, using continuous variables. The coarse grained set of
values we used were actually sufficient for our experiments.

The two other Bayesian Maps we define are the following.
1) c°™™¢" describes how to navigate in a corner, using a
symbolic location variable that can take 4 values: FrontLeft,
FrontRight, RearLeft and RearRight. This is enough for
solving tasks like “quit-corner-and-follow-right”, “away-from-
both-walls”, “stop”. 2) c¢™Pt¥—sPacedescribes how to navigate
in empty space, i.e. when the sensors do not see anything. The
behaviors defined here are “straight-ahead” and “stop”.

B. Abstract Bayesian Map

Given these three maps, the third and final pro-
gramming step is to apply the abstraction operator on
them. We obtain a map ¢, whose location variable is
Ly = {cwall ceorner cempty—space} The action variable
lists the behaviors defined by the low level maps: A =
{follow-wall-right, go-away-from-wall, . ..}. The rest of the
abstract map is according to the schema of Fig. 4.

We want here to discuss the localization question. Let us
assume that the robot is in empty space: all its sensors read
0. Let us also assume that the robot is currently applying the
“straight-ahead” behavior, that sets Vrot and Virans near 0
(no rotation) and 40 (fast forward movement), respectively,
using sharp Gaussian distributions.

Let us consider the probability to be in location
cempty—space (with w standing for wall, ¢ for corner and
e for empty — space):

P([Lt — Cempty—space] | P)
P(Pw L%,U L’éll) Aw ‘ [Lt :cemptyfspace])
x P(Pc L? Lg/ A¢ | [Lt — Cemptyfspace])
P(Pe L§ Lg/ Ae | [Lf :Cempty—space])

Of the three terms of the product, two are uniforms, and
one is the joint distribution given by c“P¥=space That joint
distribution gives a very high probability for the current situ-
ation, as describing the phenomenon “going straight ahead in
empty space” basically amounts to favoring sensory readings
of 0 and motor commands near 0 and 40 for Vrot and
Virans, respectively. The situation is quite the opposite for
P([L; = c¢*] | P): for example, ¢! does not favor at all
this sensory situation. Indeed, the phenomenon “I am near a
wall” is closely related to the fact that the sensors actually
sense something. The probability of seeing nothing on the
sensors knowing that the robot is near a wall is very low:
P([L; = ¢v%] | P) will be very low. The reasoning is similar
for P([Ly = c°™¢"] | P).

This computation can thus be interpreted as the recognition
of the most pertinent underlying map for a given sensorimotor
situation. Alternatively, it can be seen as a measure of the
coherence of the values of the variables of each underlying
map, or even as a Bayesian comparison of the relevance of
models, as assessed by the numerical value of the joint dis-
tributions of each lower level model. Since these distributions
include (lower level) location and action variables, the maps
are not only recognized by sensory patterns, but also by what
the robot is currently doing.

The localization question can therefore be used to assess
the “validity zones” of the underlying maps, i.e. the places
of the environment where the hypotheses of each model hold.
Experimentally, we have the robot navigate in the environment,
and ask at each time step the localization question. We can
summarize visually the answer, for example by drawing values
for L;, and report the drawn value on a Cartesian map of
the environment. A (simplified but readable) result is shown
Fig. 5. As can be seen, the robot correctly recognizes each

3841

O wall

) ® empty-space

= Teves we vt L]

Fig. 5. 2D projection of the estimated “validity zones” of the maps ¢!,
cCOTNET et c€MPtY—space The bottom part of the figure is a screenshot of
the localization module of the abstract map: it shows the “comparison” and
competition between the underlying models. The winner is marked by the
central dot: in this case, the robot was near a wall.

situation that it has a model for. Let us note that the resulting
zones are not contiguous in the environment: for example, all
the corners of the environment are associated with the same
symbol, namely, c®°""°". This effect is known as perceptual
aliasing. But this very simple representation is sufficient for
solving the task that was given to the robot: we report here
that the behavior “go-hide-in-any-corner” is indeed generated
by the abstract map.

A typical trajectory for the robot, starting from the middle
of the arena, is to start by going straight ahead. As soon as a
couple of forward sensors sense something, the “empty-space”
situation is not relevant anymore, and the robot applies the best
model it has, depending on the correlation between what the
sensors see: if it looks like a wall and moves like a wall, then
the probability for the “wall” model is high; on the other hand,
if it rather feels like a corner, then the corner model wins the
probabilistic competition. Suppose it was near a wall, then it
starts to follow it, until a corner is reached. In our first version,
the corner model was designed “too independently” of the wall
model: the validity zone of the ¢®"¢" map was too small,
and seldom visited by the robot as it passed the corner using
the “follow-wall-right” behavior, defined by ¢!, The robot
would then miss the first corner, and stop at another one. This
shows that the decomposition of the task gives independent
sub-tasks only as a first approximation. We solved the problem
by modifying the “corner” model, so that it would recognize
a corner on a typical “follow-wall-right” trajectory.

VI. CONCLUSION

We have presented the Bayesian Map formalism: it is a gen-
eralization of most probabilistic models of space found in the
literature. Indeed, it drops the usual constraints on the choice
of decomposition, forms, or implementation of the probability

distributions. We have also presented the Abstraction operator,
for building hierarchies of Bayesian Maps.

The experiments we presented are of course to be regarded
only as “proofs of concept”. Their simplicity also served di-
dactic purposes. However, these experiments, in our view, are
a successful preliminary step toward applying our formalism.
Part of the current work is of course aimed at enriching
these experiments, in particular with respect to the scaling
up capacity of the formalism.

Moreover, since each map of the hierarchy is a full proba-
bilistic model it is potentially very rich. Possible computations
based on these maps include questions like the prediction
question P(Ly | A L), which can form the basis of planning
processes. Hierarchies of Bayesian Maps are therefore to be
placed alongside model based approaches, instead of pure
reactive approaches. Exploiting such knowledge by integrating
a planning process in our Bayesian Map formalism is also part
of the ongoing work.

REFERENCES

[1] J. Leonard, H. Durrant-Whyte, and I. Cox, “Dynamic map-building for
an autonomous mobile robot,” The International Journal of Robotics
Research, vol. 11, no. 4, pp. 286-298, 1992.

[2] S. Thrun, “Probabilistic algorithms in robotics,” Al Magazine, vol. 21,
no. 4, pp. 93-109, 2000.

[3] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting in
partially observable stochastic domains,” Artificial Intelligence, vol. 101,
no. 1-2, pp. 99-134, 1998.

[4] L. R. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition.
Englewood Cliffs, New Jersey: Prentice Hall, 1993, ch. Theory and
implementation of Hidden Markov Models, pp. 321-389.

[S] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and C. Boutilier,
“Hierarchical solution of Markov decision processes using macro-
actions,” in Proceedings of the 14th Conf. on Uncertainty in Artificial
Intelligence (UAI-98), G. F. Cooper and S. Moral, Eds. San Francisco:
Morgan Kaufmann, July, 24-26 1998, pp. 220-229.

[6] T. Lane and L. P. Kaelbling, “Toward hierarchical decomposition for
planning in uncertain environments,” in Proceedings of the 2001 1JCAI
Workshop on Planning under Uncertainty and Incomplete Information.
Seattle, WA: AAAI Press, August 2001.

[7]1 J. Pineau and S. Thrun, “An integrated approach to hierarchy and
abstraction for POMDPs,” Carnegie Mellon University, Technical Report
CMU-RI-TR-02-21, August 2002.

[8] S. Thrun, “Robotic mapping: A survey,” Carnegie Mellon University,
Technical Report CMU-CS-02-111, February 2002.

[9] K. Murphy, “Dynamic bayesian networks: Representation, inference and

learning,” Ph.D. thesis, University of California, Berkeley, Berkeley, CA,

July 2002.

S. Thrun, “Learning metric-topological maps for indoor mobile robot

navigation,” Artificial Intelligence, vol. 99, no. 1, pp. 21-71, 1998.

T. Lane and L. P. Kaelbling, “Nearly deterministic abstractions of

markov decision processes,” in 18th Nat. Conf. on Artificial Intelligence,

2002.

B. J. Kuipers, “The spatial semantic hierarchy,” Artificial Intelligence,

vol. 119, no. 1-2, pp. 191-233, 2000.

O. Trullier, S. Wiener, A. Berthoz, and J.-A. Meyer, “Biologically-

based artificial navigation systems: Review and prospects,” Progress in

Neurobiology, vol. 51, pp. 483-544, 1997.

J. Diard, “La carte bayésienne — un modele probabiliste hiérarchique

pour la navigation en robotique mobile,” These de doctorat, Institut

National Polytechnique de Grenoble, Grenoble, France, Janvier 2003.

O. Lebeltel, P. Bessiere, J. Diard, and E. Mazer, “Bayesian robot

programming,” Autonomous Robots (in press), vol. 16, no. 1, 2004.

J. Diard, P. Bessiere, and E. Mazer, “A survey of probabilistic models,

using the bayesian programming methodology as a unifying framework,”

in The Second Int. Conf. on Computational Intelligence, Robotics and

Autonomous Systems (CIRAS), Singapore, December 2003.

(10]

(11]

[12]

[13]

[14]

[15]

[16]

3842

International Journal of Robotic Research

Bayesian Occupancy Filtering for Multi-Target Tracking : an
Automotive Application

C. Coué, C. Pradalier, C. Laugier, Th. Fraichard and P. Bessiere

Inria® Rhone-Alpes & Gravir’-CNRS¢
655 av. de I’Europe, Montbonnot, 38334 St Ismier Cedex, France
Tel. +33 476 61 54 36 Fax. 433 476 61 52 10
christophe.coue @inria.fr

http://www.inrialpes.fr/sharp

January 7, 2004

Submitted Version

Keywords — Bayesian reasonning, multitarget tracking, occupancy grids.

Acknowledgements — This work was partially supported by the French pro-
gramme “La Route Automatisée” (http://www.lara.prd.fr/) and the Euro-
pean project IST-1999-12224 “Sensing of Car Environment at Low Speed Driving”
(http://www.carsense.orq).

“Institut National de Recherche en Informatique et en Automatique.
bLab. Graphisme, Vision et Robotique.
“Centre National de la Recherche Scientifique.

Bayesian Occupancy Filtering for Multi-Target
Tracking: an Automotive Application

C. Coué, C. Pradalier, C. Laugier, T. Fraichard and P. Bessiere
Inria Rhone-Alpes & Gravir -CNRS
http://www.inrialpes.fr/sharp

Abstract— Reliable and efficient perception and reasoning
in dynamic and densely cluttered environments is still
a major challenge for driver support systems. Most of
today system use target tracking algorithms based on rigid
model. They work quite reliably in simple environments
with few potential obstacles like on freeways. However,
these approaches usually fail in more complex environments
including a large number of dynamical potential obstacles,
as it is usually the case in city driving conditions. In this
paper, we propose a new approach for robust perception
and danger assesment of highly dynamic environments. This
approach is called Bayesian Occupancy Filtering. It basically
combines a 4-dimensionnal occupancy grid representation of
the obstacle state-space with Bayesian filtering techniques.

I. INTRODUCTION AND PROBLEM STATEMENT
A. The ADAS context

Unlike regular cruise control systems, Adaptive Cruise
Control (ACC) systems use a range sensor to regulate the
speed of the car while ensuring collision avoidance with
the vehicle in front. ACC systems were introduced on
the automotive market in 1999. Since then, surveys and
experimental assessments have demonstrated the interest
for this kind of systems. They are the rst step towards
the design of future Advanced Driver Assistance Sys-
tems (ADAS) that should help the driver in increasingly
complex driving tasks. The use of today commercially
available ACC systems is pretty much limited to motor-
ways or urban expressways without crossings. The traf c
situations encountered are rather simple and attention can
be focused on a few, well de ned detected objects (cars
and trucks). Nonetheless, even in these relatively simple
situations, these systems show a number of limitations:
they are not very good at handling xed obstacles and
may generate false alarms; moreover, in some ’cut-in’
situations, i.e. when the intrusion of an other vehicle
or a pedestrian in the detection beam is too close to the
vehicle, they may be unable to react appropriately.

A wider use of such systems requires to extend their
range of operation to some more complex situations in
dense traf ¢ environments, around or inside urban areas.
In such areas, traf c is characterized by lower speeds,

tight curves, traf c signs, crossings and fragile traf c
participants such as motorbikes, bicycles or pedestrians.

B. The related multi-target tracking problem

A prerequisite to a reliable ADAS in such complex traf-
¢ situations is an estimation of dynamic characteristics of
the traf c participants, such as position and velocity. Most
of today system use various target tracking algorithms [1].
The objective is to collect observations, i.e. data from
the sensor, on one or more potential obstacles in the
environment of the vehicle, and then to estimate at each
time step and as robustly as possible the obstacles position
and velocity. Classical approach is to track the different
objects independently, by maintaining a list of tracks, i.e.
a list of currently known objects. The main dif culty of
multi-target tracking is known as the Data Association
problem. It includes observation-to-track association and
track management problems. The goal of observation-
to-track association is to decide whether a new sensor
observation corresponds to an existing track or not. Then
the goal of track maintenance is to decide the con rmation
or the deletion of each existing track, and, if required,
the creation of new tracks. Numerous methods exist to
perform this data association problem [2], [3], [4]. A
complete review of the tracking methods with one or more
sensors can be found in [5].

Urban traf c scenarios are still a challenge in multi-
target tracking area: the traditional data association prob-
lem is intractable in situations involving numerous appear-
ances, disappearances and occlusions of a large number
of rapidly maneuvering targets.

C. Outline of our approach

The objective of this paper is to propose a new approach
for a robust perception and analysis of highly dynamic
environments. This approach has been designed in order
to avoid the data association problem previously men-
tioned. It is based on a probabilistic grid representation
of the obstacles state space. As we consider the position
and the velocity of the potential obstacles with respect

to our vehicle, this grid is 4-dimensional and is called
the obstacle state space (OSS) grid . Then for each cell
of the grid, different properties (occupancy, danger ...)
are estimated using sensor observations and some prior
knowledge.

Bayesian Programming: uncertainty is inherently
present in any model of a real phenomenon. A robust
estimation of these properties requires to take into ac-
count this uncertainty. This is done using probabilistic
reasoning, which has recently become a key paradigm
in robotics. Probabilistic approaches have already been
used to address various robotic problems, such as CAD
modeling, map building and localization [6], [7], [8]. The
probabilistic framework we are using is based on an im-
plementation of the Bayesian theory [9]. This framework,
referred as Bayesian Programming, initially developed to
design robust robot control programs [10], [11], [12].
However, we have shown that its scope of application
is much broader, and that it can be used whenever one
has to deal with problems involving uncertain or incom-
plete knowledge [13], [14]. The Bayesian Programming
paradigm is introduced in section II.

Obstacle State Space grid: two main properties have to
be estimated for the grid cells: occupancy and danger.
Concerning the occupancy probability, the objective is to
compute from the sensor observations the probability that
each cell is full or empty. To avoid a combinatorial ex-
plosion of grid con guration, the cell states are estimated
as independent random variables. This estimation detailed
in section III is in fact an original implementation of the
occupancy grids framework [15], [16], which has already
been extensively used for static indoor mapping [17] using
a 2-dimensional grid. More recently, occupancy grids have
been adapted to track multiple moving objects [18]. In this
approach, spatio-temporal clustering applied to temporal
maps is used to perform motion detection and tracking. A
major drawback, relatively to the ADAS context, of this
work is that a moving object may be lost due to occlusion
effects.

Fig. 1. The CyCab, equipped with a Sick laser range finder

Bayesian Occupancy Filter: to take into account the
dynamic environment, and to be as robust as possible
relatively to objects occlusions, it is necessary to take into
account the sensor observations history and the temporal
consistency of the scene. This is done by introducing a
two-step mechanism in the occupancy grid estimation.
This mechanism includes a prediction (history) and an
estimation (new measurements) steps. This mechanism
is derived from the Bayes filters approach [19] and it is
called the Bayesian Occupancy Filter (BOF). It is detailed
in section IV.

Danger assessment: The most relevant property for an
ADAS system is the danger associated to a cell and
to the related controls of the vehicle. Our approach for
solving this problem is to combine the previous occupancy
property with a danger criteria depending on the relative
localization of the considered cells with the controlled
vehicle, and on the control characteristics of the vehi-
cle. This approach has been implemented as a collision
avoidance system on a CyCab (see g 1), an electric
car' equipped with a Sick laser range nder, allowing
the system to estimate targets position and velocity. The
collision avoidance system is described in section V.

II. BAYESIAN PROGRAMMING

Any model of a real phenomenon is inherently incom-
plete. There are always some hidden variables, not taken
into account in the model that in uence the phenomenon.
The effect of these hidden variables is that the model
and the phenomenon never behave exactly the same
way. Furthermore, perception and control are inherently
uncertain. Uncertainty arises from sensor limitation or
noise. Rational reasoning with incomplete and uncertain
information is quite a challenge. Bayesian Programming
addresses this challenge relying upon a well established
formal theory: the probability theory [9].

The usual notion of logical proposition (either true or
false) is the rst key concept of probabilistic reasoning.
Logical operators can be used to derive new propositions
(conjunction, disjunction, negation). Discrete variable is
the second concept that is needed: it is a set of logical
proposition that are exhaustive and mutually exclusive (at
least one is true, only one is true). Discrete variables can
be combined too (conjunction). To deal with uncertainty,
probabilities are attached to propositions, and to manipu-
late probabilities, usual inference rules are used:

o Conjunction rule:
PXY)=PX)P(Y |X)

"http://www.robosoft.fr

o Normalization rule:
> o) =
X

with X and Y discrete variables and P a probability.

Relevant Variables
Decomposition
Parametric Forms

D o
Program escription

Question

Fig. 2. structure of a Bayesian Program.

In this framework, a Bayesian Program is made up of
two parts: a description and a question.

The description can be viewed as a knowledge base
containing the a priori information available on the prob-
lem at hand. It is essentially a joint probability distribu-
tion. The description is made up of three components:

1) A set of relevant variables on which the joint dis-
tribution is de ned. Typically, variables are motor,
sensory or internal.

2) A decomposition of the joint distribution as a prod-
uct of simpler terms. It is obtained by applying
Bayesian rules and taking advantages of the con-
ditional independencies that may exists between
variables.

3) The parametric forms assigned to each of the terms
appearing in the decomposition (they are required
to compute the joint distribution).

Given a distribution, it is possible to ask questions.
Questions are obtained rst by partitioning the set of
variables into three sets:

1) S§: the searched variables.

2) K: the known variables.

3) F: the free variables.

A question is then de ned as the distribution:
P(S | K) (1)

Given the description, it is always possible to answer
a question, i.e. to compute the probability distribution
P(S | K). To do so, the following general inference is
used:

1) - PG

_ —XZ

where « is a normalization term.

As such, the inference is computationally expensive
(Bayesian inference in general has been shown to be NP-
Hard [20]). A symbolic simpli cation phase can reduce

(S F K), 2)

drastically the number of sums necessary to compute
a given distribution. However the decomposition of the
preliminary knowledge, which express the conditional
independencies of variables, still plays a crucial role in
keeping the computation tractable.

Our group developped an API?, called ProBT® in or-
der to express Bayesian programs, and the corresponding
inference engine to automate computation. This engine
operates in two stages:

o a symbolic simpli cation stage which allows to re-
duce the complexity of the probability distribution to
be computed.

e a numeric stage that actually computes the distribu-
tion.

This engine is now commercialized by the Probayes®
company.

III. STATIC ESTIMATION OF THE OCCUPANCY
PROBABILITY

A. Bayesian Program

Our goal is to estimate the occupancy probability of
each cell of the grid, using the last sensor observations.
The variables that are relevant here are:

e C : the cell itself. This variable is 4-dimensional
and represents a position and a speed relative to the
vehicle;

o E¢ : the state of the cell C', occupied or not;

e Z : the sensor observation set. One observation is
denoted Z,;. The number of observation is denoted
S

e M : the matching variable. Its goal is to specify
which observation of the sensor is currently used to
estimate the state of a cell.

The following decomposition of the joint distribution
determined by these variables is chosen:

P(C)P(Ec |C)P(M)
P(CEcZM) = S . 3
x [[P(Zs|C Ec M)
s=1
Parametric forms have to be assigned to each of the
terms of this decomposition:

o P(C) represents the information on the cell itself. As
we always know the cell for which we are currently
estimating the state, this distribution does not need
to be speci ed;

e P(E¢ | C) represents the a priori information on the
occupancy of the cell. If available, a prior distribu-
tion could be used to specify it. Otherwise, a uniform

2 Application Programming Interface
3http://www.probayes.com

* o

o
X
L
a)

21 = (8.3,-4,0,0)
22 = (57 33 07 O)
25 = (7.3,1.9,0,0.8)

1
0.8
0.6
0.4
0.2
0
-4 -2 0 2 4 -4 -2 0 2 4
b))

P([Ec =1]| Z¢)
[c = (2,y,0,0)]

P([Ec =1]|Z¢)
[c = (x,y,0,0.8)]

Fig. 3. Example of static grid estimation. a) the situation and the sensor observations, given in (z,y, &, ¥); b) and c) values of occupancy probability
for two “slices” of the 4-dimensionnal grid, i.e. for all possible positions at a given speed.

distribution has to be selected. Next section will
explain how the prior distribution may be obtained
from passed estimation;

e P(M) is chosen uniform;

o the form of P(Z;|C Ec M) depends on the value
the matching variable:

— if M # s, the observation is not due to the
cell C. Consequently, we cannot say anything
on this observation. P(Zs | C Ec M) is de ned
by a uniform distribution;

- if M = s, the form of P(Z,|C Ec M) is given
by the sensor model. Its goal is to model the
sensor response knowing the cell state. Details
on this model can be found in [16].

This ends the description. We can now ask questions.
Since we want an estimate of a cell occupancy, the
question to ask to the inference engine is the following:

P(Ec | Z O). “)

Following the general inference mechanism given
by (2), the result of the inference can be written as
follows:

S S
P(Ec | Z2C)o Y (HP(ZS | Ec C M)))
M=1 \s=1

During the inference, the sum on this variable allows
to consider every sensor observation to update the state of
one cell. Please note that the estimation step is performed
without explicit association between cells and observa-
tions, replaced by the integration on all the possible values

of M.

B. Experimental result

To test the estimation of occupancy grids presented in
the previous section, both a simulator and the real CyCab

vehicle were used.

Fig 3 shows rst results of grid estimation. The left
picture depicts the situation: the CyCab is modeled as
the red circle; the part of the environment covered by
the grid is represented by the light gray rectangle; the
sensor eld of view is modeled by the dark gray area. In
this situation, three obstacles (black circles) are present
in front of the cycab. Two obstacles are static, the third
one is moving from the left to the right, at a speed of
0.8 m/s represented by a black arrow. The CyCab is not
moving in this rst experiment.

As mentioned earlier, we use a 4-dimensional grid.
Thus only 2-dimensional slices of the grid are depicted
by Fig. 3 b) and c). Fig. 3 b) depicts the occupancy
probability of each cell corresponding to a null relative
velocity (i.e. ¢ = [z,y,0,0]), which is the velocity
of two sensor observation. As expected, two areas with
high occupancy probabilities are visible. These probability
values depends on probability of detection, probability of
false alarm, and on sensor precision. All these character-
istics of the sensor are taken into account in the sensor
model. As the measured speed of the third obstacles is far
from null speed, any area of high occupancy probability
corresponds to this observation in this slice of the grid.
The cells hidden by one of the three sensor observations
or located outside the sensor eld of view have not
been observed. Thus we can not conclude about their
occupancy. That explains the areas of probability values
equal to 0.5 (red areas). Finally, for cells located far from
any sensor observation, the occupancy probability is low
(purple areas).

Fig. 3 ¢) depicts the occupancy probability of each cell
corresponding to the velocity of the third observation, i.e.
¢ = [z,y,0,0.8]. Consequently we nd an area of high
occupancy probabilities corresponding to this observation.

Areas of probability values equal to 0.5 corresponding to
unobserved cells (i.e. hidden or located outside the sensor
eld of view) are still present on this slice of the grid.

IV. BAYESIAN OCCUPANCY FILTER

Bayes lters [19] address the general problem of esti-
mating the state sequence z*, k € IN of a system given
by:

ot = R b, 6)

where f* is a possibly nonlinear transition function, u*~!
is a control variable (e.g. speed or acceleration) for
the sensor which allows to estimate its ego-movement
between time k — 1 and time k, and w® is the process
noise. This equation describes a Markov process of order
one.

Let 2" be the sensor observation of the system at imte
k. The objective of the ltering is to recursively estimate
x® from the sensor measurements:

2P = hF(2F o). @)

where h* is a possibly nonlinear function and v* is the
measurement noise. This function models the uncertainty
of the measurement z* of the system’s state z*.

In other words, the goal of the lItering is to recursively
estimate the probability distribution P(X* | Z¥), known
as the posterior distribution. In general, this estimation is
done in two stages: prediction and estimation. The goal
of the prediction stage is to compute an a priori estimate
of the target’s state known as the prior distribution. The
goal of the estimation stage is to compute the posterior
distribution, using this a priori estimate and the current
measurement of the sensor.

Exact solutions to this recursive propagation of the
posterior density do exist in a restrictive set of cases.
In particular, the Kalman Iter [21][22] is an optimal
solution when the functions f* and h* are linear and the
noises w” and v* are Gaussian. But in general, solutions
cannot be determined analytically, and an approximate
solution has to be computed.

Prediction k
P(EL | Ck UF)

W

Estimation
P(Eg | 2F CF)

Fig. 4. Bayesian Occupancy Filter as a recursive loop.

In our case, the state of the system is given by the
occupancy state of a cell of the grid. For that purpose, we
hade developped the new concept of Bayesian Occupancy
Filter. This consists in a two-steps estimation of the
occupancy state, as depicted in g 4.

A. Estimation step

In this loop, the estimation step is similar to the static
estimation of the grid depicted in the previous section,
except that the a priori on the cell occupancy P(EL | CF)
is not given by an uniform distribution, but by the result
of the previous prediction step.

B. Prediction step

The goal of this processing step is to estimate an
a priori model of the occupancy probability at time k of
a cell using the latest estimation of the occupancy grid,
i.e. the estimation at time k£ — 1. The variables that are
relevant here are:
e CF : the cell C considered at time k;
o E’é : the state of this cell C, at time k;
o CF1: the cell C at time k — 1;
o Eé’l : the state of this cell at time k£ — 1;
o UF=1 :the control input of the cycab at time k —
1. For example, it could be a measurement of its
instantaneous velocity at time k — 1.
The following decomposition of the joint distribution
determined by these variables can be obtained:

P(Cy EECFVEET UMY =
P(U*1Y)P(Ck-1)
xP(Eg | CF1) ®)
x P(C*| k=1 k1)
xP(EL| EE OF=1 COF)

Parametric forms must be assigned to each of the terms
appearing in the decomposition:

e P(C*=1) and P(U*~1) are chosen as uniform dis-
tributions;

. P(EZ’1 | C*~1) is given by the result of the estima-
tion step at time k — 1;

e P(Ck| C*k1 Uk=1) is given by the dynamic model.
It represents the probability that an object has moved
from the cell C*~! to the cell C*. This movement is
due to the object himself and to the cycab movement
between kK — 1 and k;

« P(EL|EETCF 1 CF) represents the probability
that an existing object at time k—1 (i.e. [Ef ' = 1]
still exists at time k (i.e. [Ef = 1]). As we consider
that objects can nott disappear, Dirac are chosen for
these distributions.

-0 -9
(] (]
a.l b.1.

[|
<9 o

. .

c.l. d.1.

Fig. 5. A short sequence of a dynamic scene. The first row describes the situation: a moving object is temporary hidden by a second object. The second
row shows the predicted occupancy grids, and the third row the result of the estimation step. The grids show P([E g =1] |z y [=0.0] [y =1.0])

Now the description is complete and question can
be asked. Since we want an estimate of the occupancy
probability for each cell, we ask the inference engine to
answer the question:

P(EE | CF U,)
The result of the inference is:

P Ok Okfl Ulcfl
P(Eg | C* U’“‘l)mZ(X}(Eél | CF 1))>. (10)

ck—1
k—1
o

In general, this expression cannot be determined analyt-
ically, and cannot even be computed in real time. Thus an
approximate solution of the integral has to be computed.

Our approximation algorithm is based on the basic
idea that only few points are needed to approximate the
integral. Thus, for each cell of the grid at time k£ — 1, we
compute the probability distribution P(C* | C¥~1). A cell
c¥ is drawn according to this probability distribution. Then
the cell C*~! is used to update only the predicted state
of the cell ¢*. The complexity of this algorithm increases
linearly with the number of cells in our grid, and ensures
that the most informative points are used to compute the
sum appearing in (10).

So the estimation of the occupancy grid at time % is
done in two steps. The prediction step uses the estimation
step at time k—1 and a dynamical model to compute an
a priori estimate of the grid. Then the estimation step

a.l. b.1.

c.l. d.1.

Fig. 6. A short sequence of a dynamic scene. The cycab is moving forward at a constant speed. The grids show P([F é, =1]|zylzt=-20][y=

0.0))

uses this prediction and the sensor observations at time k
to compute the grid.

C. Experimental results

Fig 5 shows an extract of a short sequence of successive
prediction and estimation results. Its goal is to demon-
strate the robustness of our approach to objects occlusions,
without any special logic. The rst row describes the
situation : the cycab is immobile, two moving objects are
in the sensor eld of view. One object is moving from left
to right, the second one from right to left. In the situation
depicted by the g 5 (cl), the rst object is hidden by
the second one, and thus is not detected by the Sick laser
range nder.

Second and third rows present respectively results of
the prediction step and of the estimation step. We choose
to represent only the cells of the grid corresponding to
relative speed equals to & = 0.0, y = 1.0m/s, which is
close to the speed of the temporary hidden object. The
color represents the occupancy probability of the cell.

An area of high occupancy probability is well de ned in
gs 5 (a2) and 5 (a3). This area corresponds to the moving
object. We remark an area of occupancy probability values
equals to 0.5, which corresponds to the cells hidden by
the second object. Same areas are still de ned in gs
5 (b2) and 5 (b3) . The g5 (c2) presents the result of the
prediction step, based on the grid presented in g 5 (b3),
and on a dynamic model. This prediction shows that an

object should be located in the area hidden by the static
object. Consequently, even if this object is not detected
by the laser, an area of high occupancy probability is
found in the g 5 (c3). Of course, the con dence in object
presence, i.e. the values of the occupancy probability in
the grid, decreases when the object is not observed by the
Sensor.

In g 5 (d3) the moving object is no longer hidden by
the static object. Thus it is detected by the laser, and the
occupancy probability values increase.

Fig 6 shows another sequence of successive predic-
tion and estimation results. The rst row describes the
situation: in this case the cycab is moving forward. Its
longitudinal speed is constant, and equals to 2.0m/s. A
static object is present in front of the cycab, in the sensor

eld of view. Since the cycab is moving forward, this
object nally goes out the sensor eld of view, as depicted
in g6 (dl).

Asin g5, second and third rows present respectively
results of the prediction and of the estimation step. In this
sequence we choose to represent only the cells of the grid
corresponding to relative speed equals to z = —2.0, y =
0.0m/s, which is close to the relative speed of the object.

What should be noticed from this gure is that the
prediction step allows to express knowledge outside the
sensor eld of view. In particular in g 6 (d3), an area of
high occupancy probability still exists, even if the object
has not been detected by the sensor. In gs 6 (a3), (b3) and
(c3), areas of occupancy probability values smaller than
0.5 could be seen outside the sensor eld of view. Thus
the prediction step could be seen as a memory , since the

eld of view of the sensor is increased by remembering
its last observations.

Humans interpretation of an environment representation
is not enough to ensure that this representation is usable
for a robot. The next section shows how the Bayesian
occupancy lter could be used to perform a basic and
vital behavior.

V. APPLICATION TO COLLISION AVOIDANCE

The goal of this application is to prove that the
Bayesian occupancy lter described in the previous sec-
tion is usable and relevant in the context of ADAS. In
this section, the Bayesian occupancy Iter is applied to
the collision avoidance of the CyCab. Our goal is to select
the CyCab’s forward speed in order to avoid the dynamic
objects of the environment (cars and pedestrians).

As mentioned in earlier, the cell state can be used to
encode a number of properties of the robot environment.
Properties of interest for robot programming could include
occupancy, observability, reachability, etc. In the previous
section, it was used to encode the occupancy of the

cell. In this section, we show how it could be used to
encode the danger of the cell. By this way, the CyCab
is longitudinally controlled by combining the occupancy
and the danger of all cells.

A. Estimation of danger

~

S
NS A
NSNS,
‘ 2

Fig. 7. Cells of high danger probabilities. For each position, arrows
model the speed.

-

pedestrian

parked car

Cycab

Fig. 8. Scenario description : the pedestrian is temporary hidden by a
parked car.

For each cell of the grid, the probability that this cell is
hazardous is estimated. This estimation is done without
considering the occupancy probability of the cell. Thus
we estimate the probability distribution P(D¥, | C*), for
each cell C of the CyCab environment. D% is a boolean
variable that indicates whether the cell C* is hazardous
or not.

As a cell C of our grid represents a position and
a velocity, the TCPA (Time to the Closest Point of

Fig. 9. Example of the CyCab control (see Extension 1 for the video).

Approach) and the DCPA (Distance to the Closest Point
of Approach) can be estimated for each cell. Thanks to
TCPA and DCPA, the estimation of the danger is more
intuitive than if we had considered directly the relative
speed encoded in the grid : the lower the DCPA and the
shorter the TCPA, the more hazardous the cell.

Fig 7 shows the cells for which danger probability is
greater than 0.7. Each cell is modeled with an arrow: the
beginning of the arrow indicates the position, the length
and the direction indicates the speed. First, we can see
that any cell located close to the CyCab is considered
as hazardous, whatever the speed is. For other locations,
the more hazardous cells are those which speed is in the
direction of the CyCab. As we consider relative speed in
the danger grid, this grid does not depend of the actual
CyCab velocity.

B. Control of the CyCab

Our goal here is to control the longitudinal speed of the
CyCab, in order to avoid moving objects. The behavior
we want the CyCab to adopt is very simplistic : brake or
accelerate whether it feels itself in danger or not.

To program this behavior, we consider simultaneously
for each cell X of the environment its danger probability
(given by the distribution P(D¥ | C*) explained in the
§ V-A) and its occupancy probability (given by the pos-
terior distribution P(EZL | Z* C*)). We look for the most
hazardous cell that is considered as occupied, that is:

max {P(DE | C*), with P(EL | C*) > 0.5}.

Then the longitudinal acceleration of the CyCab is de-
cided according to this level of danger and to its actual
velocity.

Fig 8 depicts a scenario used for the test of the CyCab
control. This situation involves the CyCab, a parked
car and a pedestrian. The CyCab is moving forward,
the pedestrian is moving from right to left. During the
experimentation, the pedestrian is temporarily hidden by
the parked car.

Fig 9 shows few snapshots (see also Extension 1, which
shows the entire video) of the experiment. The CyCab

brakes to avoid the pedestrian, and accelerate when the
pedestrian has passed.

time (s)

Fig. 10. Velocity of the cycab during the experiment involving a
pedestrian occlusion.

Fig 10 shows the velocity of the CyCab during this
experiment. From ¢ = 0 s to t = 7 s, the CyCab
accelerates, up to 2 m/s. At t = 7s, the pedestrian is
detected. As a collision could possibly occur, the CyCab
brakes. From ¢ = 8.2 s to t = 9.4 s, the pedestrian
is hidden by the car. Due to the Bayesian occupancy

Iter, hazardous cells of the grid are still considered
as occupied. Thus the CyCab still brakes. When the
pedestrian reappears, i.e. t = 9.4s, there is no more a
risk of collision, so the CyCab could accelerate.

What it is to be noted here is that no decision is taken
before the choice of the command applied to the CyCab.
In particular, we do not know the exact number of object
located in the CyCab environment. Furthermore, exact
positions and velocity of these objects are not estimated.

VI. CONCLUSION

This paper addressed the problem of 4-D occupancy
grid estimation in an automotive context. According to
us, this grid can be an alternative to complex multi-
target tracking algorithms for applications which does not
require information such as the number of objects. To
improve the estimation, a prediction step has been added.
Thanks to this prediction, the estimation of the grid is
robust to temporary occlusions between moving objects.
To validate the approach, an application involving the Cy-
Cab vehicle has been shown. The CyCab is longitudinally
controlled in order to avoid obstacles. This basic behavior

is obtained by combining the occupancy probability and
the danger probability of each cell of the grid.

Future developments will include: a) improvements of
the approximation algorithm for the prediction step. These
improvements should allow to estimate a bigger grid,
which is required to control a car in urban areas. b) fu-
sion of the occupancy grid with higher-level information,
such as GPS maps, to better estimate the danger of the
situation.

Acknowledgements. This work was partially sup-
ported by the European project IST-1999-12224 “Sens-
ing of Car Environment at Low Speed Driving”
(http://www.carsense.org).

VII. REFERENCES

[1] X. Clady, F. Collange, F. Jurie, and P. Martinet.
Object tracking with a pan-tilt-zoom camera : ap-
plication to car driving assistance. In Proceedings
of IEEE International Conference on Robotics and
Automation, Seoul (Korea), May 2001.

Y. Bar-Shalom and X. Li. Multitarget Multisensor

Tracking : Principles and Techniques. YBS Publish-

ing, 1995.

H. Gauvrit, J.P. Le Cadre, and C Jauffret. A formu-

lation of multitarget tracking as an incomplete data

problem. IEEE Trans. on Aerospace and Electronic

Systems, 33(4), 1997.

R.L. Streit and T.E. Luginbuhl. Probabilistic multi-

hypothesis tracking. Technical Report 10,428, Naval

Undersea Warfare Center Division Newport, 1995.

[5] S. Blackman and R. Popoli. Design and Analysis of
Modern Tracking Systems. Artech House, 2000.

[6] S. Thrun. Learning metric-topological maps for in-
door mobile robot navigation. Artificial Intelligence,
99(1), 1998.

[7] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra.
Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101, 1998.

[8] K.O. Arras, N. Tomatis, and R. Siegwart. Multisen-
sor on-the- y localization : precision and reliability
for applications. Robotics and Autonomous Systems,
44:131 143, 2001.

[9] E. T. Jaynes. Probability Theory: the Logic of
Science. Cambridge University Press, 2003.

[10] O. Lebeltel. Programmation Bayésienne des Robots.
These de doctorat, Institut National Polytechnique de
Grenoble, Grenoble, France, Septembre 1999.

[11] O. Lebeltel, P. Bessiere, J. Diard, and E. Mazer.
Bayesian robot programming. Autonomous Robots,
16:49 79, 2004.

[4]

10

[12] C. Coue and P. Bessiere. Chasing an elusive target

with a mobile robot. In Proceedings of the IEEE-

RSJ International Conference on Intelligent Robots

and Systems, Hawai (HI), 2001.

K. Mekhnacha, E. Mazer, and P. Bessiere. The

design and implementation of a bayesian CAD mod-

eler for robotic applications. Advanced Robotics,

15(1):45 70, 2001.

R. Le Hy, A. Arrigoni, P. Bessiere, and O. Lebel-

tel. Teaching bayesian behaviours to videogame

characters. In Proc. of the IEEE-RSJ Int. Conf.

on Intelligent Robots and Systems, Las Vegas (NV),

October 2003.

[15] H.P. Moravec. Sensor fusion in certainty grids for
mobile robots. Al Magazine, 9(2), 1988.

[16] A. Elfes. Using occupancy grids for mobile robot

perception and navigation. IEEE Computer, Spe-

cial Issue on Autonomous Intelligent Machines, Juin

1989.

S. Thrun. Robotic mapping: A survey. In Exploring

Artificial Intelligence in the New Millenium. Morgan

Kaufmann, 2002.

E. Prassler, J. Scholz, and A. Elfes. Tracking mul-

tiple moving objects for real-time robot navigation.

Autonomous Robots, 8(2), 2000.

A. H. Jazwinsky. Stochastic Processes and Filtering

Theory. New York : Academic Press, 1970.

G. Cooper. The computational complexity of prob-

abilistic inference using bayesian belief network.

Artificial Intelligence, 42(2-3), 1990.

[21] R.E. Kalman. A new approach to linear ltering and
prediction problems. Journal of basic Engineering,
35, Mars 1960.

[22] G. Welch and G. Bishop. An introduction to the
Kalman Iter. available at http://www.cs.
unc.edu/ welch/kalman/index.html.

[14]

[18]

[19]

[20]

The CyCab: a Car-Like Robot Navigating
Autonomously and Safely Among Pedestrians

Cédric Pradalier, Jorge Hermosillo, Carla Koike,
Christophe Braillon, Pierre Bessiere, Christian Laugier

firsthname.lasthame@inrialpes.fr
GRAVIR — INRIA — INPG Grenoble
INRIA Rhéne-Alpes, 38334 Saint Ismier cedex France

Abstract

The recent development of a new kind of public transportation systens mlia particular
double-steering kinematic structure enhancing manoeuvrability in cluttexecements
such as downtown areas. We daillsteerable cama vehicle showing this kind of kinemat-
ics. Endowed with autonomy capacities, the bi-steerable car ought to cosuliakly and
safely a set of abilities: simultaneous localisation and environment modelling, mpbén-
ning and motion execution amidst moderately dynamic obstacles. In this papeldness
the integration of these four essential autonomy abilities into a single applicSpewaif-
ically, we aim at reactive execution of planned motion. We address thenfo$icontrols
issued from the control law and the obstacle avoidance module usinghjilisti@tech-
niques.

Key words: Car-like robot, navigation, path planning, obstacle avoidance, autoreomou
navigation.

1 Introduction

The development of new Intelligent Transportation Syst@mS), more practical,
safe and accounting for environmental concerns, is a téagival issue of highly
urbanised societies today [18]. One of the long run objestis to reduce the use of
the private automobile in downtown areas, by offering nevdera and convenient
public transportation systems. Examples of these, are tizalyobot — designed
at INRIA and currently traded by the Robosoft company (see welwsoft.fr) —
and the pi-Car prototype of IEF (Institut d’Electronique Bamentale, Université
Paris-Sud).

Preprint submitted to Elsevier Science 7 October 2004

The kinematic structure of these robots differs from thaaafar-like vehicle in
that it allows the steering of both the front axle and the ora. We call a vehicle
showing this feature a bi-steerable car (or BiS-car for 3hort

Endowed with autonomy capacities, the bi-steerable canttiogcombine suitably
and safely a set of abilities that eventually could come &orthief of the end-user
in complex tasks (e.g. parking the vehicle). Part of thedéiab have been tackled
separately in previous work: simultaneous localisaticshemvironment modelling,
motion planning execution amidst static obstacles andclesavoidance in a mod-
erately dynamic environment without accounting for a pcthmotion.

In this paper we address the integration of these four essantonomy abilities
into a single application. Specifically, we aim at reactixeaition of planned mo-
tion. We address the fusion of controls issued from the cbkdw and the obsta-
cle avoidance module using probabilistic techniques. Véecanvinced that these
results represent a step further towards the motion autgrdriiis kind of trans-
portation system. The structure of the paper follows.

In section 2, we sketch the environment reconstruction andlisation methods
we used and we recall how the central issue regarding theometanning and

execution problem for the general BiS-car was solved. Se&iexplains how our
obstacle avoidance system was designed and section 4 hoas iaglapted to the
trajectory tracking system. In section 5 we present expantal settings showing
the fusion of these essential autonomy capacities in ogtdarable platform the
CyCab robot. We close the paper with some concluding remarkgaidelines on

future work in section 6.

2 Localisation, Environment modelling, M otion planning and execution

In the design of an autonomous car-like robot, we are coedrhbat localisation,
modelling of the environment, path planning and trajectoagking are of funda-
mental importance.

2.1 Map-building and Localisation

The CyCab robot is the size of a golf-cab capable of attainindouBOKm/h.
Its “natural” environment is the car-park area of the INRIA RBéAlpes (about
10000m?). For localisation purposes, we did not want to focus on gtection of
natural features in the environment, since such detecsioftén subject to failure
and not very accurate. So, in order to ensure reliabilitydeeded to install artifi-
cial landmarks in the environment. These landmarks had tebected easily and

Observation 100
-’r. :\1 \(-
oy K
'.u:_-;;\l ¢
Observation 272
R
x;;"'.f‘ T \
Vo ho
Y (\(’ ;')/‘ »
87, Y
LY AN
/\ | 5
*

Fig. 1. Obstacle map evolution: Experimental images during the obstacle nidjmgpu
phase. The vehicle is driven within the car-park area as long as negidadtaneously, the
laser range sensor is used to detect the landmarks to build-up the localisagpon

accurately, and they should be identified with a reasonabtgatation effort. Fig.
2 shows our robot, its sensor and the landmarks : cylindeereavwith reflector
sheets, specially designed for our Sick laser range finder.

Landmarks

Sick 2D lasef
range finder

.

Fig. 2. Cycab robot and its landmarks for localization

Moreover, in order to keep flexibility, we wanted to be abletpip the environ-
ment with non permanent beacons. For this reason, we cottélgmn a definitive
landmark map, and we had to build a system able to learn therdstate of the

car-park area. This led us to use SLAMmethods. The method which was best
suited to our needs was the Geometric Projection Filter[@gHdor reference, and
[24] for implementation details). It consists in buildingvap of features uncor-
related with the robot state. Such features are, for instathe distance between
landmarks or angles between three of them.

Owing to the accuracy of the laser range finder, to the goodcehaf our land-

marks, and to the strength of the SLAM methods we use, we a&tsmbhe worst
case accuracy of our localisation system to the followingezaabout 10 centime-
tres in position and 2 degrees in orientation. We refer taeeeto [24] for more
details about the way we evaluate these values.

2.2 The Obstacle Map

The previous method localises the robot and builds a lankimap. But, we still

miss a map of observed obstacles in order to plan safe paitehieve this goal,
we build a kind of simplified occupancy grid[8] on the envinoent. This struc-
ture gives us informations correlated with the probabilitsit a given place is the
boundary of an obstacle.

Both maps are built online, in real-time, by the robot durimg tonstruction phase.
Fig. 1 shows how the obstacle map evolves while we are exygdhe environ-
ment. This map is made of small patches which are added aongdaithe need of
the application. In this way, the map can be extended in argction, as long as
memory is available. Once the map-building phase has fidjghe obstacle map
is converted into a pixmap and passed to the Motion Planrnagges

2.3 Motion Planning Amidst Static Obstacles

The Motion Planner adopted for the CyCab was presented infEa8entially, it is

a two step approach, dealing separately with the physicatcaints (the obstacles)
and with the kinematic constraints (the non-holonomy). plaaner first builds a
collision-free path without taking into account the norddmmmic constraints of
the system. Then, this path is approximated by a sequenadlisian-free feasible
sub-paths computed bysaiitable? steering method. Finally, the resulting path is
smoothed.

A key issue in non-holonomic motion planning is to find a stegemethod account-
ing for the kinematics of the robot. One way of designing stgemethods for a

I Simultaneous Localisation And Mapping
2 i.e. Verifying the topological property as explained in [26].

non-holonomic system is to use ftatnesgroperty [10] allowing also for feedback
linearisation of the nonlinear system (this is discusseskntion 2.6). This is what
we did for the general BiS-car for which a flat output—or linsisag output—was
given in [26].

2.4 Steering a BiS-car

The kinematics model of a general bi-steerable vehicle @rftht output are shown
in Fig. 3.

Fig. 3. Cycab robot, its landmarks and its kinematics model showing the catediaf the
flat output (pointH) with respect to the reference frame of the robot placed at gairn
our case we have thét ., y-, 0,) is the state of the robot.

The striking advantage of planning a path in the flat spackaswe only need
to parameterise a 2-dimensional curve whose points andatiggs define every-
where the current-dimensional staté of the robot (in the case of the BiS-car
n = 4). The main characteristic of such a curve is its curvatufeom which the
steering angle can be computed.

Fig. 4 shows the outcome of the motion planner using an olestaap generated
as described in the previous section.

2.5 User-Planner Interface

The User-Planner interface in the CyCab is achieved througtueh-screersu-
perposed to 840 x 480 pixels LCD display. Additionally, we use the keyboard to
allow for the entrance of data.

3 The configuration space in robotics is called state spacén control theory, so we will
use indistinctly both terms.

-I—I-'
¢

Buildings
Vegetation
By
" &
\/ Grown obstacles
Landmarks Or|g|n Goal

3

e g
!;‘! Sy

'ﬂl'l_r
'ﬂl'

Fig. 4. Path computed by the motion planner using a real obstacle map. Tiaelebsire
grown as well as the robot before computing the path.

Parked cars

The interface is used to display the current position of ¢t within its environ-
ment and to capture the goal position entered by the useselasitions together
with the obstacle map is passed to the motion planner. Theubyiath is then
displayed allowing the user to validate the path or startvasearch.

Finally, the reference trajectory is generated using aleegnarameterisation of the
path [16] and the user is requested to accept to start thelgxeof the trajectory.

2.6 Trajectory tracking using flatness

It is well known that a non-holonomic system cannot be sisdal using only
smooth state static feedbacks [6]. Ever since then, tingng feedbacks [25]
and dynamic feedbacks have been successfully used inyartfor the canonical
tractor-trailer and car-like robots [9].

Flat systems are feedback linearisable by means of a testratass of dynamic
feedback callegendogenou$l0]. The interest is that we are able to use state-of-
the-art linear control techniques to stabilise the systéfa.present here results
coming from recent work on feedback linearisation of theggahBiS-car.

For a reference frame of the robot placed at péinh Fig. 3, the flat outpuy =
(y1,y2)" of a BiS-car are the coordinates of a polt= (x,,y,)" = (y1,y2)",

computed as a function of the state as follows:

H = F +P(p)ip + Q(p)ty-

whereP(yp) and Q(y) are coordinate functions relative to the robot’s reference
frame (see [26] for details) and wheii (resp.u,.) is the unitary vector in the
directiond (resp. the directiod + 7).

Looking for a tractable relation between the controls ofrtht®ot and the linearising
output, we found an expression giving the flat output dynamiith respect to a
more convenient reference frame placed at the middle ofrtme &xle of the robot
(point) and having orientation = [0 + 5(¢)] =7 where the functiorB(y) is the
characteristic angle of the velocity vector of the flat otitpu

The convenience of this new reference frame relies on thetatthe velocity of
the flat output has a single component in it. More preciselgsuening thaty =
0+ ((¢) + m—one can show that, in this reference frame, the flat outpoénhjcs
is given by the following expression [14]:

oH

E:UHU“/ (1)
oP 0

vu=veleos(ip — 0 —m) — OF) 4wl £]

where ¢, w,) are the controls of the robot (i.e. the heading and the fste@tring
speeds)y — § —) is the angle subtended between the velocity vector of thetrob
VFr and the velocity vector of the flat outpu}; (see Fig. 3).

From expression (1) the open-loop controls of the robot eafohnd as soon as
the trajectory of point{ is known. As we are interested in stabilising the BiS-car
around a reference trajectory, we explored the fact thap@vo the flatness prop-
erty, the system is diffeomorphic to a linear controllalhe $§10]. The endogenous
dynamic feedback that linearises the general bi-steedeem is presented in
[14]. Then, from linear control theory, it can be shown ttregt €losed-loop control
stabilising the reference trajectoyy has the following form :

2 . .
i = 0" = ki (o - 0)) i =12 ‘2)
=0

Where(.)) stands for the total derivative of orderSee [7] for details.

3 Obstacle avoidance using probabilistic reasoning

The previous approach considers trajectories in a staticta@mment. In order to
make the execution of these trajectories more robust, aadbsavoidance system
should be prepared to react to unpredicted changes in ti@ement. This section
presents the principles of our obstacle avoidance module.

3.1 State of the art on reactive trajectory tracking

Most of the approaches for obstacle avoidance are locai]jl that is they do not
try to model the whole environment. They goal is rather tosesesor measures to
deduce secure commands. Being simpler and less compuiaiantensive, they
seem more appropriate to fast reactions in a non-staticamwient. On the other
hand, we can not expect optimal solutions from a local mettad possible that
some peculiar obstacle configuration create a dead-endAftoah the robot cannot
escape with obstacle avoidance only.

3.1.1 Potential fields

The general idea of potential fields methods, proposedllyitby O. Khatib in
1986, is to build a function representing both the navigagoals and the need for
obstacle avoidance. This function is built so has to deergdgen going closer to
the goal and to increase near obstacles. Then, the navigatblems is reduced to
an optimisation problem, that is, to find the commands thiaglsrthe robot to the
global minimum of the function. This later can be defined wéhpect to the goal
and the obstacles but other constraints can also be addeththe

Numerous extensions to the potential fields have been pedsisce 1986. Among
others, we can cite the Virtual Force Fields [3], the VectetdHistograms [4] and
their extensions VFH+[28] and VFH*[29]. Basically, thesethws try to find the
best path to the goal among the secure ones.

3.1.2 Steering Angle Field (SAF)

The SAF method, proposed tieiten et al.in 1994, use obstacles to constrain
steering angle in a continuous domain. Simultaneouslgdpentrol is an iterative
negociation process between the high-level driving moduakkthe local obstacle-
avoidance module.

One of the first extension to this method was published in.[R Bxpress the col-
lision avoidance problem as an optimisation problem in tht@ot controls space

(linear and rotational speeds).

3.1.3 Dynamic Window

The Dynamic Window approach[11] propose to avoid obstdnyesxploring com-
mand space in order to maximise an objective function. Tdiey laccounts for the
progression toward the goal, the position of closer obstaghd current robot con-
trols. Being directly derived from the robot dynamic, thisthwle is particularly
well adapted to high speed movements.

The computational cost of the optimization process is redugsing the dynamic
caracteristics of the robot (bounded linear and angulaglacation) so as to reduce
the searched space. This kind of constraints are called Constraintssince the
must be respected. Conversely, when the objective functiclides preferences
on the robot movement, we call the resulting constrea& Constraints

3.1.4 Dynamic environments and Velocity Obstacles

In the specific case of moving obstacles, special methodsleen proposed[17,2]

using theVelocity Obstaclenotion. Basically, this notion consist in projecting per-
ceived obstacles and their expected movement in the spasmcofe commands.

So, each mobile object generates a set of obstacles in themaondspace. These

obstacles represent the commands that will bring to a amili; the future.

In the general case, obstacle movement parameters areawoh krpriori, so they
have to be deduced from sensor data. Obstacle avoidana®lsaate then com-
puted in reaction to theses previsions. Currently, it i$ gtilte difficult to get re-
liable previsions of the obstacles future trajectory. Consaétly, these obstacle
avoidance methods are not appliable in real situations yet.

3.1.5 Obstacle avoidance and trajectory following

When we want to perform obstacle avoidance manoeuvres vdtibsving a trajec-

tory, a specific problem appear. On our non-holonomous rabetpath planning
stage took into account the kinematic of the robot and pldranéeasible path.
When the reactive obstacle avoidance generates commapdgliftle leaves its
planned trajectory. Then, we cannot be sure anymore thatitiz objective of the

trajectory is still reachable.

A solution to this problem was proposed in [20]. This methaestto deform the
global trajectory in order to avoid the obstacle, respeetkimematic constraints
and ensure that the final goal is still reachable. Even if itgzally very inter-

esting, this obstacle avoidance scheme is still difficulapply in real situations

due to it computational complexities, especially on an aooous car. In our ex-
periments[20], the vehicle had to stop for several minutesrder to perform the
trajectory deformation

3.2 Obijectives

After all these results on obstacle avoidance, it seemab\hat our goal is not to
propose a new solution to this problem. It has been showh[1®at probalities and
bayesian inference are appropriate tools to deal with redidwncertainty and to
model reactive behaviors. We this in mind, we wanted to thinéut the expression
of the obstacle avoidance problem as a bayesian inferenbéepn. Consequently,
the originality of our approach is mainly its expression dnel semantic we can
express with it.

3.3 Specification

The CyCab can be commanded through a spgéezhd a steering angle. It is
equipped withr radians sweeping laser range finder. In order to limit the vol
ume of the data we manipulate, we summarised the sensortagmi values :
the distances to the nearest obstacle ity/& angular sector(see Fig. 5). We will
call D,k = 1...8the probabilistic variables corresponding to these measur

Besides, we will assume that this robot is commanded by sogtelavel system
(trajectory following for instance) which provides it with pair of desired com-
mands(Vy, ®4).

Our goal is to find commands to apply to the robot, guarantghegehicle security
while following the desired command as much as possible.

3.4 Sub-models definition

Given the distancé); measured in an angular sector, we want to express a com-
mand to apply that is safe while tracking desired commanueNkeless, since this
sector only has limited information about robot surrouggiwe choose to express
the following conservative semantic: tracking the deso@thmand should be a soft
constraint whereas an obstacle avoidance command shoalddre constraint, the
closer the obstacle, the harder the constraint.

We express this semantic using a probability distributigarahe commands to
apply (V, @) knowing the desired commands and the distabeeneasured in this

10

Vdesired
ar 113
S I
> &
3 <]
L B 3
Vimin |
0 2 2 Diml 6 K] 1
Bmin Dmax
Big e
at 1 |8t —
3 ;
= 1=)
b)
Small | Small |
0 2 Z DMl 6 s 1| 0 2 Z Dj[m] & '3 1
Dmin Dmax Dhmin Dmax

Fig. 6. Evolution of mean and standard deviation/ofV' | VzD;) and P;(® | ®,D;)
according to distance measured

sector:

Bi(VO | Va®aD;) = Pi(V | VaD;) P(® | @4D;) €))
where P,(V | Vu;D;) and P,(® | ®,D;) are Gaussian distributions respectively
centred onuy (Vy, D;) and uge (P4, D;) with standard deviatiorry (V,, D;) and
oo (®y, D;). Functionsuy, e, oy, 0 are defined with sigmoid shape as illustrated
in Fig. 6. Example of resulting distributions are shown ig.H.

11

There is two specific aspects to notice in Fig. 6 and 7. Fissicerning the means
1y andug, we can see that, the farther the obstacle, the closer toetfieed com-
mandy will be, and conversely, the nearer the obstacle, the mawgsge: minimal
speed, strong steering angle.

Probabi ity

Probabi | ity

27758078 RRIRIS,
27, o%s
et eoross oo
LTI AL ALALRIRRS
RS
256008y
SRR AR
oo te %5
oot sy ol
3L IR ILRKL
EGALIRIAIEIR
':,;'.,o,go,zo,'o,o
&8s
258

%

20.1
Speed o 53 Steering Angle Steering Angle

Fig. 7. Shape of;(V® | V;®,4D;) for far and close obstacles

Second, the standard deviation can be seen as a constvainHer instance, when
an obstacle is very close to the robot (smal), its speednustbe strongly con-
strained to zero, this is expressed by a small standardtaevi&onversely, when
obstacle is far, robot speednfollow the desired command, but there is no damage
risk in not applying exactly this command. This low level straint is the result of

a big standard deviation.

3.5 Command fusion

Knowing desired controls and distance to the nearest dbsteits sector, each sub-
model, defined by?;(V® | V;0,D;), provides us with a probability distribution
over the robot controls. As we have eight sectors, we wilehavfuse the controls
from eight sub-models. Then we will find the best control imteof security and
desired control following.

To this end, we define the following joint distribution:
P(V®V;®;D,...Dg S)=P(D;...Dg) P(Vy ®,) (4)
P(S)P(V® | Vy®;D;...Dg S)
where variables € [1...8] express which sector is considerét|.D; ... Ds) and

P(V,;®,) are unknown distributiofh. As there is no need to favour a specific sub-
model, we define”(S) as a uniform distribution. The semantic 8fwill be em-

4 Actually, as we know we will not need them in future computation, we dorveha
specify them.

12

phasised by the definition @ (V® | V4D, ... DsS):
PV [Vy@uD: ... Ds[S =i]) = B(VP | Va®yD;)

In this equation, we can see that the variabBlacts as model selector: given its
valuei, the distribution over the commands will be computed by thiesodel;,
taking into account only distande;.

Using equation 4, we can now express the distribution weealyrinterested in,
that is the distribution over the commands accounting flothal distances but not
variables:

P(V® | Vy®yDy...Dg) =S (P(S)P(V® | Vg®y Dy ... Ds S)) (5)
S

This equation is actually the place where the different trans level expressed by
functionsoy andog will be useful. The more security constraints there will the,
more peaked will be the sub-model control distribution. Go-models who see no
obstacles in their sector will contribute to the sum with gjtfat distribution, and
those who see perilous obstacles will add a peaky distabuhence having more
influence (see Fig. 8). Finally the command really executethb robot is the one
which maximiseP(V & | V; ®; D; ... Ds) (eq. 5).

Command due to \e ‘
close obstacles on the left ’ r
\L Command due to not so close

Desired command

lobstacles on the right

PV ® | Dy sVy®,)

(=}

Fig. 8. Probability distribution over speed and steering, resulting from ltktaole avoid-
ance system.

13

3.6 Results

Fig. 9 illustrates the result of the obstacle avoidancessysipplied on a simulated
example. The simulated CyCab is driven manually with a jostia square envi-
ronment. In this specific situation, the driver is continsiguasking for maximum
speed, straight forward (null steering angle). We can ofesen the dotted trajec-
tory that, first obstacle avoidance module bends the t@jgat order to avoid the
walls, and second, when there is no danger of collisiongretesommands are
applied exactly as requested.

From the density of dots, we can figure out the robot speede@is when it comes
close to the walls and while its turning and try to follow desispeed when obsta-
cles are not so threatening.

Startingosition
Max speed,
Null steering angle

Fig. 9. Robot trajectory while driven manually with constant desired stgangle

3.7 Relation to fuzzy logic approaches

The design of our obstacle avoidance modules may remind seeders of a fuzzy
logic controller[15,22,12]. It is rather difficult to sayahone approach is better
than the other. Both fuzzy logic and bayesian inference vimmiselves as exten-
sion of classical logic. Furthermore, both methods willldei#h the same kind of
problems, providing the same kind of solutions. Some wifer the great freedom
of fuzzy logic modelling and others will prefer to rely on tegong mathematical
background behind bayesian inference.

As far as we can see, the choice between fuzzy logic and lzayé@sierence is
rather an personal choice, similar to the choice of a prograrm language: it has
more consequences on the way we express our solution thdre olution itself.

To extend the analogy, one might relate fuzzy logic to the i@@jleage whereas
Bayesian inference would be closer to Ada.

14

4 Trajectory tracking with obstacle avoidance

The method presented in the previous section provides us amitefficient way
to fuse a security system and orders from a high level sysisvertheless the
perturbations introduced in the trajectory following ®yatby obstacle avoidance
are such that they can make it become unstable. In this sestibshow how we
integrate trajectory tracking and obstacle avoidance.

While following the trajectory, obstacle avoidance will nifgccertain commands
in order to follow as much as possible desired orders whaatjng security. These
modifications may introduce delay or diversions in the cartrop. If no appropri-

ate action is taken to manage these delays the control langeragrate extremely
strong accelerations or even become unstable when obstaegone. This is
typically the case when our system evolves among movinggtedes. Thus we
designed a specific behaviour to adapt smoothly our congstem to the pertur-
bations induced by obstacle avoidance.

4.1 Multiplexed trajectory tracking

4.1.1 Validity domain of flat control law

Experimentally, we found that the control law based on flesrean manage errors
in a range of about 1 meter and 15 degrees around nominattygeje Further-
more, as this control law controls the third derivative cé ttat output (eq. 2), it
is a massively integrating system. For this reason, a conptturbation such as
immobilisation due to a pedestrian standing in front of tie@igle will result in
a quadratic increase of the control law output. This phem@mgs mainly due to
the fact that when obstacle avoidance slows the robot ddwirongly breaks the
dynamic rules around which the flat control law was built. Beye is no surprise
in its failure.

4.1.2 Probabilistic control law

In order to deal with the situations that flat control law catrmanage, we designed
a trajectory tracking behavioul TB) based again on probabilistic reasoning (sec-
tion 4.2). As this behaviour has many similarities with agbeed sum of propor-
tional control laws, we do not expect it to be sufficient tdbdtse the robot on its
trajectory. Nevertheless, it is sufficient to bring it baokle convergence domain
of the flat control law when obstacle avoidance perturbatiweve occurred. Basi-
cally, the resulting behaviour is as follows: while the rblsoclose to its nominal
position, it is commanded by flat control law. When, due to atist avoidance, it

is too far from its nominal position, TTB takes control, amg to bring it back to

15

flat control law’s convergence domain. When it enters thisaarrflat control law
is reinitialised and starts accurate trajectory trackimg(s illustrated in fig. 10).

4.1.3 Time control

Path resulting from path planning (section 2.3) is a listaidat configuration in-
dexed by time. So when the robot is slowed down by a travensedgstrian, it
compensates its delay by accelerating. Nevertheless, thibenbot is stopped dur-
ing a longer time, let’s say fifteen seconds, it should nosater to be delayed of
fifteen seconds, otherwise it will try to reach a positioregit second ahead, with-
out tracking the intermediary trajectory. To tackle thiffidulty, we introduced a
third mode to the trajectory tracking: when the robot coredar from its nominal
position, we freeze the nominal position, and we use the DliBé¢nter the domain
where nominal position can be unfrozen.

The global system is illustrated by Fig. 10: we implementecha kind of multi-
plexer/demultiplexer which manage transitions betweartroblaws. In order to
avoid oscillating between control laws when at the intezfaetween two domains
of validity, we had to introduce some hysteresis mechanisthe switching. This
is illustrated in Fig. 10.

Orientation error —Limit of control law validity
Histeresis limit

|—— Flat Control —
=
Law I

Trajectory
Obstacle

. Distance
Avoidance

Flat Control to nominal position

Proportional Control
Frozen nominal position

—| Tracking —

Configuration
[}
1}
[onuo)

10qOY pauIsa(]

]
[onuo)

Behavior

Robot

Control Law Selector

10qoy parddy
|7:‘

Traj. Tracking
——{ Behavior —

Frozen nominal ||
position

Proportional control

Fig. 10. Basic diagram of the control law selector mechanism and validity idgro&the
control laws

4.2 Trajectory tracking behaviour

Our trajectory tracking behaviour was built as a probatigliszsasoning, in a way
similar to the obstacle avoidance presented above (se8JidRunctionnaly, it is
very similar to a fuzzy control scheme as presented in [18]idunstrated in [12].

To specify our module, we use a mechanism of fusion with damp23]. If A
and B are two variables, we will define a diagnosis boolean vagid§l which
express a consistency betweéandB. Then,A andB will be called thediagnosed
variablesof 7%.

Our goal is to express the distribution over the desiredrottV,, ¢,) knowing
reference control§V,., ®,) planned by the path planning stage, and error in position

16

(06X, &Y") and orientation¥ with respect to the nominal position. Fig. 11 illustrates

theses variables.

Reference
Vehicle

Tracking
Vehicle

Fig. 11. Variables involved in trajectory tracking behaviour

In addition to the preceding variables, we will add five diegis variablesl%, I“//d

19, 1¥ andly’. Variables linked to an error variabléX, §Y, 40) will diagnose if a
given command helps correcting this error. Variables ldhicereference commands
evaluate if a command is similar to the reference one.

All these variables describe the relation between theigribaed variables in the
following joint distribution:

P(Va®aV, @, 0X & & 1)) I I3, 13, 157) = (6)
P(Vy @) P(V, ®,) P(6X &Y &)
P(IYY | Va 6X) P(Iy; | Va V;)
P(Ig, | ©4 &) P(Ig, | ®a & Vo) P(Ig | ©4 ;)

Using this joint distribution and Bayes rule, we will be alarnfer
P(Va®a|(V, ®,) (6X & &) (7)

[0y =01y, =118, = 1 Uy, =1] [Ig; =1])

Basically, this equation expresses the fact that we are ngolar the most likely
commands in order to correct tracking error while accounfor reference com-
mands. Having all the diagnosis variables set to one ergdahige semantic.

In the preceding joint distribution (eq. 6), all the diagedwvariables are assumed
to be independent, and to have uniform distributions. Adl ittformation concern-
ing the relation between them will be encoded in the distidouover diagnosis

17

variables. In order to define this distributions, we first efihe functioni, (z, y)
as a Mahalanobis distance betweeandy:

dg($7y) = e_%<%)
Then, for two variables! and B, we define

P([IF =1] | AB) = dsa,p)(A, f(B)).

Let's see how preceding functiossand f are defined in specific cases.

4.2.1 Proportional compensation of errors

In the case of ¥, we setf(4X) = a.dX and
S(Vg, 6X) = max((1 — £.0X)0max s Ormin)-

Expression off implies that the maximum aP(1{¥ | V; 4X) will be for a value of
V, proportional to the errofX . Expression of5 defines the constraint level associ-
ated to this speed: the bigger the error, the more confideat@that a proportional
correction will work, so the smaller.

The basic behaviour resulting from this definition is thaewhhe robot is behind
it nominal position, it will move forward to reduce its errdine bigger its error, the
faster and with more confidence that this is the good cortrapply.

ForIg};, we use a similar proportional scheme. Its basic meaningaiswhen the
robot has a lateral error, it has to steer, left or right, deljogy on the sign of this
error. Again, the bigger the error, the more confident welaméwe have to steer.

Finally, the same apply foﬁ"d, except that the steering direction depends not only
of the orientation error, but also of the movement directign

4.2.2 Using planned controls

In the path planning stage, the trajectory was defined asaf seiminal position,
associated with planned speed and steering angle. Theytthéeaccounted for,
especially when error is small.

Let's consider first[“f;. We setf and S as follows: f(V,) = V, andS(V,, V,) =

ov. € [Omin, Omax), rather close t@ ... By this way, planned speed is used as a
indication to the trajectory following system. The distiiton over/z" is defined
using the same reasoning.

18

4.3 Results

Fig. 12 illustrates the basic behaviour of our trajectoagcking behaviour. In both
graphs, desired command will maximise eitti&h” | X V) or P(® | 0Y 60 D.).
Since curveP(V | 60X V,.) is closer toP(V | 6X) than toP(V | V.), we can
observe that longitudinal errofX) has much more influence than reference com-
mand on the vehicle speed. In the same manner, steering iangleade-off be-
tween what should be done to correct lateral erébr) @nd orientation erroré@),
lightly influenced by reference steering angle.

P(V1[dX=0.2]) - - [
P(V I [Vez—1]) ===+ - ’ P(@l [
[

/\ P(V | [dX==0.2] [Vc=—1]) — | 0B ,’ ‘\ P(® | [dc=0.3])-----]
RN ’ \ P([dY=0.5] [@=0.11¢ c=0.3])— —
‘. 3 / \ B
1 \
AN
;o \.
1/ W\
1 \
1 / \
’ 1/ Vi
~~~~~~~~~~~~~~~~~~~~~~~~~~~ L. 1, \
'/ VN,
. Y I
, N ok + \o- i >
. NG A s [N
’ e A 7 e \ N
"’ N ook B \ .
’ \\ / o Q N
z ~ 2 ‘o
= v /_,’ D = T~
s 1 0s 0 o0s 1 15 2 ﬂn 03 02 01 0 01 02

Fig. 12. Trajectory tracking : resulting command fusion

Fig. 13 shows the collaboration of obstacle avoidance ajddiory following on
a simulated example. Planned trajectory passes throughstaabe which was not
present at map building time. Obstacle avoidance modifies@ig in order to grant
security. When errors with respect to nominal trajectorpashig, our control law
selector switch to the trajectory tracking behaviour. Hei®a big longitudinal er-
ror, due to obstacle avoidance slowing down the vehiclecwingger the switch-

ing.

4.4 Discussion

Using the multiplexed control laws we managed to integratéhe same control
loop, our flat control, accurate but sensible to perturlmatisith our TTB, less

accurate but robust to perturbations. By this way we obtamsygstem capable of
tracking trajectory generated by our path planner while@anting for unexpected
object in the environment.

Finally, when the robot has gone too far from reference ¢tajy, or when reactive
obstacle avoidance can not find suitable controls anymbneay be necessary to
re-plan a new trajectory to the goal. This has not been imgheed on the robot
yet, but this should not be considered neither a techniaahsaientific issue.

19



Flat Control Trajectory tracking behavior Flat Control

3L Executed trajectory i

Planned trajectory

o | ! Py
2 4 6 8

_ ! ! !
g s =3 )

x [ml

Fig. 13. Collaboration of trajectory tracking and obstacle avoidance iomuated example

o T T BT

Fig. 14. An experimental setting showing from left to right: The arbitrancipig of the
landmarks; the manual driving phase for landmark and obstacle map-loyifdeobstacle
map generated together with the current position of the robot as seen b@Ehdisplay;
the capture of the goal position given by the user by means of the tovebrsthe execu-
tion of the found trajectory among aggressive pedestrians.

5 Experimental setup

We tested the integration of these essential autonomy itegsao our experimental
platform the Cycab robot. The aim was to validate the thewaietionsiderations

20



made for the BiS-car and to get insight into the limitationghed whole motion
scheme.

The computation power on-board the Cycab Reatium IF** 233MHz running a
Linux system. All programs were written in C/C++ language.

During the experiments the speed of the robot was limited3m . The control
rate of the robot was fixed &bms. The throughput rate of the laser range-finder
was limited to140ms ® ; therefore the control system has to rely momentarily in
odometry[13] readings.

Fig. 14 is a set of pictures showing a complete applicatidegirating the stages
described throughout the paper.

) = ‘ '
T - .
L
Cycab starting f l H :g
t o

position @ {%' ‘}'
5 2

Fig. 15. Executed trajectory among static obstacles and moving pedesRearsmiddle
point (R in fig. 3) trajectory is drawn.

Planned trajectory
Executed trajectory

Multiplexer Mode

Fig. 16. Executed trajectory with respect to planned trajectory, and mukiphegde.

5 This rate is fair enough for our needs, even though we could use &imsatiriver.

21



1.5 T

Planned speed =~~~

Applied speed

z
£
st /
53 /
o ’
© /
/
05
\ 7
N
/
¥,
0 Y
Traj. Tracking Behavior(Frozen) Z
,,,,,,,,,,,,,,,,,,,,,,,,, 2
%_'.
Traj. Tracking Behavior e
3
[}
o
Flat @
| | | | | |
0 200 400 600 800 1000 1200 1400

Time index 'l = 0.05s1

Fig. 17. Applied speeds with respect to planned speed, and multiplexer mode

08 ‘ ‘

Planned steering angle - - - -
0.6 — Applied steering angle
04 —

02—

i wht il er A
gl TovoT Ty &

\ Pkl Y
. \ ,
/
02+ \ /
/|
/
-04

Traj. Tracking Behavior(Frozen)

Steering angle [rad]
(=]
E

Traj. Tracking Behavior

Flat

opow 1oxapdnnA

0 200 400 600 800 1000 1200 1400
Time index 1 = 0.05s1

Fig. 18. Applied steering with respect to planned steering, and multiplexer.mode

Figs 15 to 18 illustrates how a planned trajectory is exetwtale avoiding moving
pedestrians. In this environment, the control law usinghéias could only be used
at the beginning and at the end of the trajectory. On the n@nmabf the trajectory,
speed and steering angle are adjusted in order to maintaimityewhile keeping
pace with the plan as much as possible.

22



6 Discussion & Conclusions

In this paper, we presented our new steps toward the autonbanlyi-steerable car.
The integration of localisation, map building, traject@ianning and execution in
a moderately dynamic environment was discussed. Controukang the CyCab
flathness property was found to be insufficient for trajectomgking among moving
pedestrians.

Even if this integration was successful and provides satiefy results, we are
convinced that a reactive behaviour cannot be sufficiertbisautonomy of vehicle
in a real urban environment. For this reason, we are workimthe perception and
identification of road users (pedestrians, cars, bikesuigks). By this way, we will
be able to predict future movement of “obstacles” and totraacordingly, in a
smarterway than the simple scheme proposed in this paper.

References

[1]

(2]

3]

[4]

[5]

[6]

[7]

[8]

P. Bessiére and BIBA-INRIA Research Group. Survey: Philsiic methodology
and techniques for artefact conception and development. TechnipalfeR-4730,
INRIA, Grenoble, France, February 2003. http://www.inria.fr/rrrt/fi38.html.

S. Blondin. Planification de mouvements pour véhicule automatisé en eneimpent
partiellement connu. Mémoire de Dipléme d’Etudes Approfondies, Inst. Nat.
Polytechnique de Grenoble, Grenoble (FR), June 2002.

J. Borenstein and Y. Koren. Real-time obstacle avoidance for fasi@robots.|IEEE
Transactions on Systems, Man, and Cyberngli®§s):1179-1187, Sept/Oct 1989.

J. Borenstein and Y. Koren. The vector field histogram - fast albest@voidance for
mobile robots.IEEE Transactions on Robotics and Automafi@(8):278—288, June
1991.

O. Brock and O. Khatib. High-speed navigation using the global dyaavindow
approach. IrProc. of the IEEE Int. Conf. on Robotics and Automatibetroit, Mi
(US), May 1999.

R.W. Brockett. Asymptotic stability and feedback stabilization. In R.W. Redt
R.S. Millman, and H.J. Sussmann, editosfferential Geometric Control Theory
pages 181-191, Boston, MA: Birkhauser, 1983.

Carlos Canudas de Wit, Bruno Siciliano, and George Bastin Hdwory of Robot
Control. Springer-Verlag, 1996.

A. Elfes. Using occupancy grids for mobile robot perception andgadion. IEEE
Computer, Special Issue on Autonomous Intelligent Machihes 1989.

23



[9] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Design of trajgcstabilizing
feedback for driftless flat systems. Rroc. of the European Control Conference
pages 1882-1887, Rome, Italy, september 1995.

[10] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness anectiebf nonlinear
systems: introductory theory and examples. Journal of Contro] 61(6):1327-1361,
1995.

[11] D. Fox, W. Burgard, and S. Thrun. The dynamic window appinotx collision
avoidancelEEE Robotics and Automation Magazjdé1):23—-33, March 1997.

[12] Th. Fraichard and Ph. Garnier. Fuzzy control to drive carydigkicles.Robotics and
Autonomous Systen®4(1):1-22, December 2000.

[13] J. Hermosillo, C. Pradalier, and S. Sekhavat. Modelling odometryuaicgrtainty
propagation for a bi-steerable car. Rroc. of the IEEE Intelligent Vehicle Symp.
Versailles (FR), June 2002. Poster session.

[14] J. Hermosillo and S. Sekhavat. Feedback control of a bi-steetablasing flatness;
application to trajectory tracking. IRroc. of the American Control Conference
Denver, CO (US), June 2003.

[15] Lawrence A. Klein.Sensor Data Fusion Concepts and Applicatio8PIE, 1993.

[16] F. Lamiraux, S. Sekhavat, and J.-P. Laumond. Motion planning anttal for hilare
pulling a trailer.IEEE Trans. Robotics and Automatidib(4):640-652, August 1999.

[17] F. Large, S. Sekhavat, Z. Shiller, and C. Laugier. Towardbktiee global motion
planning in a dynamic environment using the NLVO conceptPlac. of the IEEE-
RSJ Int. Conf. on Intelligent Robots and Systdrasisanne (CH), September-October
2002.

[18] Ch. Laugier, S. Sekhavat, L. Large, J. Hermosillo, and Z. ShiBeme steps towards
autonomous cars. IRroc. of the IFAC Symp. on Intelligent Autonomous Vehjcles
pages 10-18, Sapporo (JP), September 2001.

[19] O. Lebeltel, P. Bessiére, J. Diard, and E. Mazer. Bayesiantsopmgamming.
Autonomous Robqgt2003. In Press.

[20] O. Lefebvre, F. Lamiraux, C. Pradalier, and Th. Fraichardst@tles avoidance for
car-like robots. integration and experimentation on two robot$rot. of the IEEE
Int. Conf. on Robotics and Automatiddew Orleans, LA (US), April 2004.

[21] P. Newman.On the structures and solution of simultaneous localization and mapping
problem PhD thesis, Australian Center for Field Robotics,Sidney, 1999.

[22] G. Oriolo, G. Ulivi, and M. Vendittelli. Applications of Fuzzy Logic: Towards High
Machine Intelligent Quotient Systeni@rentice-Hall, 1997.

[23] C. Pradalier, F. Colas, and P. Bessiere. Expressing bayasg@nfas a product of
distributions: Applications in robotics. IRroc. IEEE Int. Conf. on Intelligent Robots
and System2003.

24



[24] C. Pradalier and S. Sekhavat. Concurrent localization, matchidgreap building
using invariant features. IRroc. IEEE Int. Conf. on Intelligent Robots and Systems
2002.

[25] C. Samson and K. Ait-Abderrahim. Feedback stabilization of a nomioohic
wheeled mobile robot. IRroc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and
Systemspages 1242-1246, Osaka (JP), November 1991.

[26] S. Sekhavat, J. Hermosillo, and P. Rouchon. Motion planning faorséelerable car.
In Proc. of the IEEE Int. Conf. on Robotics and Automatioages 3294-3299, Seoul
(KR), May 2001.

[27] R. Simmons. The curvature-velocity method for local obstacle avo&amProc. of
the IEEE Int. Conf. on Robotics and Automatipages 3375-3382, Minneapolis, MN
(US), April 1996.

[28] I. Ulrich and J. Borenstein. VFH+: Reliable obstacle avoidancésf®rmobile robots.
In IEEE Int. Conf. Robotics Automatippages 1572-1577, Leuven, Belgium, May
1998.

[29] I. Ulrich and J. Borenstein. VFH*: Local obstacle avoidance witbkl@ahead
verification. In IEEE Int. Conf. Robotics Automatiprpages 2505-2511, San
Francisco, CA, April 2000.

25



Teaching Bayesian Behaviours to Video Game Characters

Ronan Le Hy** Anthony Arrigoni®Pierre Bessiere*Olivier Lebeltel®

aGRAVIR/IMAG
INRIA Rhoéne-Alpes, ZIRST
38330 Montbonnot, France

This article explores an application of Bayesian Programming to behaviours for synthetic video games charac-
ters. We address the problem of real-time reactive selection of elementary behaviours for an agent playing a first
person shooter game. We show how Bayesian Programming can lead to condensed and easier formalisation of
finite state machine-like behaviour selection, and lend itself to learning by imitation, in a fully transparent way

for the player.

1. Introduction

Today’s video games feature synthetic charac-
ters involved in complex interactions with hu-
man players. A synthetic character may have one
of many different roles: tactical enemy, partner
for the human, strategic opponent, simple unit
amongst many, commenter... In all of these cases,
the game developer’s ultimate objective is for the
synthetic character to act like a human player.

We are interested in a particular type of syn-
thetic character, which we call a bot in the rest
of this article. It is a player for a first person
shooter game named Unreal Tournament aug-
mented with the Gamebots control framework [1]
(see figure 1). This framework provides a tridi-
mensional environment in which players have to
fight each other, taking advantage of resources
such as weapons and health bonuses available in
the arena. We believe that this kind of computer
game provides a challenging ground for the devel-
opment of human-level Al

After listing our practical objectives, we will
present our bayesian model. We will show how we
use it to specify by hand a behaviour, and how we
use it to learn a behaviour. We will tackle learn-
ing by example using a high-level interface, and

*This work was partially funded by a grant from the french
Ministry of Research, the BIBA project (funded by the
Europen Commission), and the CNRS ROBEA project
Modéles Bayésiens pour la Génération de Mouvement.

then the natural controls of the game. We will
show that it is possible to map the player’s ac-
tions onto bot states, and use this reconstruction
to learn our model. Finally, we will come back to
our objectives as a conclusion.

Figure 1. Unreal Tournament and the Gamebots
environment.

1.1. Objectives

Our core objective is to propose an efficient way
to specify a behaviour for our bot. This can be
broken down into several criteria that hold either
for the developers or for the player.



1.1.1. Development Team’s Viewpoint

Programming efficiency. One crucial con-
cern for the programmer is productivity:
he needs both expressivity and simplicity
of the behaviour programming system.

Limited computation requirements. The
processing time alloted to Al in games is
typically between 10% and 20% of the total
processing time [2]; therefore it is important
for the behaviour system to be light in terms
of computation time.

Design / development separation. The in-
dustrial development scheme often draws
a separation between game designers and
software developers. The system should al-
low the designers to describe behaviours at
a high conceptual level, without any knowl-
edge of the engine’s internals.

Behaviour tunability. The ability to program
a variety of different behaviours, and to ad-
just each of them without having to modify
the system’s back end is essential to the de-
signer.

1.1.2. Player’s Viewpoint

“Humanness”. As defined by Laird [3],
this implies the illusion of spatial reason-
ing, memory, common sense reasoning, us-
ing goals, tactics, planning, communica-
tion and coordination, adaptation, unpre-
dictability... One important criterion for
the player is that the synthetic character
does not cheat; its perceptions and actions
should be as much as possible like a human
player’s.

Behaviour learning. This feature is grad-
ually finding its place in modern games:
the player can adjust its synthetic partners’
behaviour. The behaviour system should
therefore support learning.

The game industry mostly addresses these
goals with specialised scripting systems, powerful
but leading to behaviours hard to extend, main-
tain and learn [4]. More integrated systems are

envisioned in the form of specialised inference en-
gines or expert systems [5], but their actual use in
the industry remains limited, as they seem hard
to control or because of high computational costs.
Flocking [6] is a popular way to yield an impres-
sion of complexity while being based on simple
elementary behaviours; however it can hardly be
generalised to any kind of behaviour.

Neural networks have also found their way
to mainstream video games [7], and provide a
promising alternative to scripted systems, well
suited to learning, although the tuning of pro-
duced behaviours can be challenging. Decision
trees have also been successfuly used [8] as a
way to implement fully supervised and reinforced
learning.

Nevertheless, finite state machines remain, in
various incarnations [9,10] the most common for-
malisation for reactive behaviours — they are
easily mastered, and combined with other tech-
niques such as planification; however they suffer
from combinatorial explosion, and remain hard to
learn.

1.2. Technical Framework

As mentioned earlier, we used the Gamebots
framework to conduct our experiments. This
implies that our bot communicates with Unreal
Tournament via a text protocol on a Unix socket.
It receives messages covering its perceptions: its
position and speed, health level, ammunition, vis-
ible opponents and objects, etc. In return, it
sends actions: move to a given point, rotate,
change weapon...

The environment is perceived by the bot as a
graph, of which nodes are characteristic points of
the topology and various objects. The bot per-
ceives only what is in its field of vision.

As our objectives and framework have been ex-
posed, we shall now proceed to explicit our model
of behaviour selection, and discuss its interest for
the specification and learning of behaviours.

2. Bayesian Model

Before examining our particular bot model,
we review in the next section the principles of
Bayesian Programming [11].



2.1. Bayesian Programming

Rational reasoning with incomplete and uncer-
tain information is quite a challenge. Bayesian
Programming addresses this challenge, and relies
upon a well established formal theory: the proba-
bility theory [12]. As a modelling tool, it encom-
passes the framework of Bayesian Networks [13].

Relevant Variables
Decomposition
Parametric Forms

D L
Program escription

Question

Figure 2. Structure of a Bayesian Program

In our framework, a Bayesian Program is made
of two parts: a description and a question.

The description can be viewed as a knowledge
base containing the a priori information available
about the problem at hand. It is essentially a
joint probability distribution. The description is
made up of three components: 1) A set of rel-
evant vartables on which the joint distribution
is defined. Typically, variables are motor, sen-
sory or internal. 2) A decomposition of the joint
distribution as a product of simpler terms. It is
obtained by applying Bayes theorem and taking
advantage of the conditional independencies that
may exist between variables. 3) The parametric
forms assigned to each of the terms appearing in
the decomposition (they are required to compute
the joint distribution). These are called paramet-
ric because they can include parameters that may
change (i.e. be learned or adjusted) during the
life of the model.

Given a distribution, it is possible to ask ques-
tions. Questions are obtained first by partitioning
the set of variables into three sets: (1) Searched:
the searched variables, (2) Known: the known
variables, and (3) Free: the free variables (vari-
ables neither searched nor known for the partic-
ular question, but participating in the model). A
question is then defined as the distribution:

P(Searched | Known) (1)

Given the description, it is always possible to

answer a question, i.e. to compute the probability
distribution P(Searched | Known). To do so, the
following general inference rule is used:

P(Searched | Known)
> pree P(Searched Free Known)
P(Known)

1
7 % Z P(Searched Free Known) (2)

Free

where Z is a normalisation term.

As such, the inference is computationally ex-
pensive (Bayesian inference in general has been
shown to be NP-Hard ). A symbolic simplifi-
cation phase can reduce drastically the number
of sums necessary to compute a given distribu-
tion. However the decomposition of the prelimi-
nary knowledge, which expresses the conditional
independencies of variables, still plays a crucial
role in keeping the computation tractable.

2.2. Modelling our Bot
2.2.1. Bayesian Program

Our particular bot behaviour uses the following
bayesian program.

Relevant Variables

S;: the bot’s state at time ¢. One of Attack,
Search Weapon, SearchHealth, Explore, Flee,
DetectDanger. These states correspond to
elementary behaviours, in our example pro-
grammed in a classic procedural fashion.

Siy1: the bot’s state at time ¢ + 1.

H: the bot’s health level at t.

W: the bot’s weapon at t.

OW': the opponent’s weapon at t.

HN: indicates whether a noise has been heard
recently at t.

NE: the number of close enemies at t.

PW: indicates whether a weapon is close at .

PH: indicate whether a health pack is close at ¢.

The elementary motor commands of the bot are
the values of variables Sy ;1 and S;. They include
an attack behaviour, in which the bot shoots at
an opponent while maintaining a constant dis-
tance to him and strafing; a fleeing behaviour,



which consists in trying to escape (locally) an op-
ponent; behaviours to fetch a weapon or a health
bonus the bot noticed in its environment; a be-
haviour to detect possible opponents outside the
current field of view of the bot; and a behaviour
to navigate around the environment and discover
unexplored parts of it.

Decomposition

The joint distribution is decomposed as:

P(S; S,.1 HW OW HN NE PW PH)
= P(S)

To write the above, we make the hypothesis
that knowing Siy1, any sensory variable is in-
dependent to each other sensory variable (which
makes our model a Hidden Markov Model where
observations are independant knowing the state).
Although it may seem to reduce the expressivity
of our model, it allows to specify it in a very con-
densed way; this point will be emphasised upon
in section 2.2.2.

Parametric Forms
e P(S;): uniform

e P(S;11|S:): table (this table will be defined
in section 2.2.2)

o P(Sensor|Si11) with Sensor each of the
sensory variables: tables

Identification

The tables we use are probability distribution
tables describing Laplace laws, whose parameters
can be adjusted by hand, or using experimental
data. We describe these two processes in sections
3 (Specifying a Behaviour) and 4 (Learning a Be-
haviour).

Question

Every time our bot has to take a decision, the
question we ask to our model is?:

P(S;41|S: HW OW HN NE PW PH)
P(Siy1 S¢ HW OW HN NE PW PH)
P(St HW OW HN NE PW PH)

P(S¢) P(Se+11S0) J], P(SvilSit1)

ZsHl(P(St) P(St+1]St) HiP(S”i|St+l))
P(Si4118:) [, P(SvilSe41)
Zst+1(P(St+1‘St) L1, P(SvilSe41))

Knowing the current state and the values of the
sensors, we want to know the new state the bot
should switch into. This question leads a proba-
bility distribution, on which we draw a value to
decide the actual new state. This state translates
directly into an elementary behaviour which is
applied to the bot.

2.2.2. Inverse Programming

We shall now emphasise the peculiarities of our
method to specify behaviours, compared to one
using simple finite state machines (FSMs). The
problem we address is, knowing the current state
and the sensors’ values, to determine the next
state: this is actually naturally accomplished us-
ing an FSM.

Let us consider the case where each of our n
sensory variables has m; (1 < i < n) possible
values.

In an FSM modelling a behaviour [14,15], we
would have to specify, for each state, a transition
to each state, in the form of a logical condition
on the sensory variables.

It means that the programmer has to discrim-
inate amongst the [, m; possible sensory com-
binations to describe the state transitions. Not
only does this pose the difficult problem of deter-
mining the appropriate transitions, but it raises
the question of convenient formalised representa-
tion. This approach could actually lead to several
implementations, but will possibly [10] result in
a script resembling the following;:

if S; =A and W =None and OW =None then
if HN =Fualse and NE!=None

2in this equation, (Sv;); denotes sensory variables such as
H, W..



or NE =TwoOrMore then
Sip1 — F
else if HN =True or NE =One
and PW =True then
St+1 — A
else...

This kind of script is hard to write and hard to
maintain.

In contrast, our approach consists in giving, for
each sensory variable, for each possible state, a
distribution (i.e. m; numbers summing to 1). In
practice, we write tables like table 1, which rep-
resents P(H|Si4+1). Values of H are enumerated
in the first column, those of S;11 in the first line;
cells marked = are computed so that each column
sums to 1.

Moreover, instead of specifying the conditions
that make the bot switch from one state to an-
other, we specify the (probability distribution of
the) sensors’ values when the bot goes into a given
state. This way of specifying a sensor under the
hypothesis that we know the state is what makes
us call our method “inverse programming”.

Although somewhat confusing at first, this is
the core advantage of our way to specify a be-
haviour. As a matter of fact, we have to de-
scribe separately the influence of each sensor on
the bot’s state, thereby reducing drastically the
quantity of needed information. Furthermore, it
becomes very easy to incorporate a new sensory
variable into our model: it just requires to write
an additional table, without modifying the exist-
ing ones.

Finally, the number of values we need in order
to specify a behaviour is s2 + snm, where s is
the number of states, n the number of sensory
variables, and m the average number of possible
values for the sensory variables. It is therefore
linear in the number of variables (assuming m
constant).

3. Specifying a Behaviour

3.1. Basic specification

A behaviour can be specified by writing
the tables corresponding to P(Sy11]S:) and
P(Sensor|Si11) (for each sensory variable). Let
us consider for instance table 1, which gives the

H\ Siqy A SW SH Ex F DD
Low 0.001 0.1 zz3 0.1 0.7 0.1
Medium 0.1 To 001 =z, 0.2 5
High T o 0.001 x4 0.1 Ts5
Table 1
P(H|Si41)

probability distribution for H knowing S;y;. We
read the first column this way: given the fact that
the bot is going to be in state Attack, we know
that it has a very low probability (0.001) to have
a low health level, a medium probability (0.1) to
have a medium health level, and a strong chance
(x =1—10.001 — 0.1) to have a high health level.
This form of specification allows us to formalise
conveniently the constraints we want to impose
on the behaviour, in a condensed format, and sep-
arately on each sensory variable. For instance,
table 1 formalises the relation of the bot’s health
level to its state: if it starts attacking, then its
health is rather high; if it starts searching for
a health pack, then its health is very probably
low; if it starts fleeing, then its health is probably
rather low, but with a high degree of uncertainty.
All tables on the sensory variables are built on
the same pattern; the one giving P(S¢4+1]St) (see
table 2) is special. It gives some sort of basic
transition table; i.e. it answers in a probabilis-
tic way the question: knowing nothing but the
current state, what will be the next state?

St+1 \ St A SW SH Ex F DD

A T To T3 Ty s Te
SW 107° zp 107° 107 107° 107°
SH 107 107° zg 107 107° 10°°
Ex 10°% 107° 10°° x4 1075 107°

F 107 10~ 1075 107° x5 107°
DD 107> 107> 107°® 10~° 107° T

Table 2
P(St41]St)

The answer our sample table gives is: tend to
stay in your current state (notice the xs on the
diagonal) or switch to attack (notice the xs on the
first line) with the same high probability; switch



to other states with a very low probability (1075
— which in our example we found to be represen-
tative of “very low”).

Again, this makes a parallel with an FSM with
probabilistic transitions: with our transition ta-
ble P(S;+1|S¢), we give a basic automaton upon
which we build our behaviour by fusing the ten-
dencies given separately on each sensory variable.

3.2. Tuning the behaviour

Tuning our behaviour amounts to tuning our
probability distributions. For instance, to create
a berserk character that is insensible to its health
level, we put only uniform distributions (i.e. in
our notation, only xs) in table P(H|Si+1). A
berserk is also very aggressive, so the transition
table we proposed in table 2 is quite adapted.
A transition table for a more prudent character
would not have those zs on the first line, so that
the state A would not be particular.

To create a unique behaviour, we therefore have
to review all our tables, i.e. the influence of each
sensory variable on the character according to the
said behaviour.

3.3. Results

Several observations can be made when out
bots are playing the game. The first is that their
behaviour corresponds to what we want: the be-
haviour switching occurs reasonably, given the
evolution of the sensory variables. The second is
that they can’t compete with humans playing the
game. Noting this allows to pinpoint the fact that
our method’s interest mostly resides in the gain
of ease and power in the design of behaviours. It
does not pretend to overcome the limitations of
the elementary behaviours we are switching be-
tween, nor can it do more than what the Game-
bots framework allow, in terms of perception and
action. Therefore, what we aimed for, and finally
obtained, is a reliable, practical and efficient way
to specify the real-time selection of elementary
behaviours.

Our attempt to tune the behaviour shows that
the differences between our 'reasonable’ bot and
our ’aggressive’ bot are visible, and correspond
to what we tried to specify in the tables. For in-
stance, the aggressive bot is excited by the pres-

ence of several opponents, whereas this situation
repels the reasonable bot; and the aggressive bot
is not discouraged to attack when its health level
goes low.

4. Learning a Behaviour

Our goal now is to teach the bot a behaviour,
instead of specifying all the probability distribu-
tions by hand. It requires to be able to measure
at each instant sensory and motor variables of
the controlled bot. In particular, it is necessary
to determine the state S; at each instant. It can
be done by letting the player specify it directly
in real time, or by inferring it from his natural
actions in the game.

4.1. Selecting behaviours
This form of learning by example presents a
simple interface to the player, shown on figure 3.

Open/Save Behaviou]

Figure 3. Interface used to teach the bot: on the
right is the normal Unreal Tournament window
showing our bot; on the left is our interface to
control the bot.

The player controls in real time the elementary
behaviour that the bot executes, by using buttons
that allow switching to any state with a mouse
click. In addition to the ordinary Unreal Tour-
nament window on the right, part of the internal
state of the bot is summed up in the learning in-
terface on the left.

4.2. Recognising behaviours
While the previous method of teaching a be-
haviour works, it deprives the player of the in-



terface he is used to; his perceptions and motor
capabilities are mostly adjusted to the bot’s. In
order to solve this problem, it is possible to give
the player the natural interface of the game, and
try to recognise in real time the behaviour he is
following.

To recognise the human’s behaviour from his
low-level actions, we use a heuristic programmed
in a classical imperative fashion. It involves iden-
tifying each behaviour’s critical variables (for in-
stance, attack is characterised by distance and
speed of the bot to characters in the centre of his
field of view), and triggering recognition at sev-
eral timescales.

Recognition is done by examining a series of cri-
teria in sequence; the first that matches is chosen.
The first criterion is a characteristic event which
is back-propagated to states in the past not yet
recognised (for instance picking a health bonus
indicates that the character has been looking for
health). The second examines critical variables
over a fixed period (for instance, danger checking
is characterized by a complete rotation with little
translation, in a short amount of time). Finally,
some short-term variations of critical variables
are examined (like attacking and fleeing, which
consist in moving in a particular direction in the
presence of opponents). Exploration is a default
state, when a state does not match any of the
criteria.

We do this recognition off-line, on data repre-
senting ten to fifteen minutes of game-play; pro-
cessing this data and producing the tables that
represent our behaviour takes five to ten seconds.

4.3. Results

recognition learned, aggressive 4.4
recognition learned, cautious 13.9
selection learned, aggressive 45.7

manual specification, aggressive 8.0

manual specification, cautious  12.2
manual specification, uniform  43.2

native (level 3/8) UT bot 11.0
Table 3
Performance comparison on learned, hand-
specified, and native Unreal bots (lower is better)

Table 3 shows a comparison between different
specification methods. Numbers are the aver-
age point difference to the winning bot, over ten
games won by the first bot reaching 100 kills (for
example, a bot with 76 points at the end of a
game has a point difference of 24 to the winning
bot, since the game ends as soon as a bot reaches
100 points). Therefore, a bot winning all games
would have a score of zero. Our bots compare well
to the native Unreal Tournament bot, whose skill
corresponds to an average human player. Aggres-
sive bots (gray lines) perform significantly bet-
ter, and learning by recognition does much bet-
ter than learning by selection, along with hand
specification.

Lessons from these results can be summed up
in the following way (we will refer here to table
4, which is the same as table 1, but learnt by
recognition):

1. learnt tables share common aspects with
hand-written tables (as for the transition
table P(S¢11]St)); for instance,in the fleeing
state F, health level is much more probably
low or medium than high;

2. differences in behaviour of the teacher in-
fluence the learnt behaviour: aggressivity
(or the lack of it) is found in the learnt
behaviour, and translates into performance
variations (in our setup, aggressive be-
haviours seem to be more successful);

3. nevertheless, differences between hand-
specified and learnt models are noticeable;
they can explained by:

(a) player-specific behaviours: humans al-
most always attack and do not retreat;
another example is the low probability
of P(H = High|S;y1 = SW) in the
learnt table (dark gray cell on table
4): it can be explained by the fact that
human players give a much higher pri-
ority to searching a good weapon over
searching for health bonuses;

(b) additional information: some parts of
the hand-written tables are specified
as uniform (as a result from a refusal



or impossibility to specify theoretically
a link between two events, like the
value of the opponent’s weapon know-
ing that the bot is exploring), whereas
their learnt counterparts include infor-
mation;

(¢) perceptive differences: a human player
and a bot have a different perception of
sound (the human perceives direction
combined with the origin of sound, like
an impact on a wall or the sound of the
shooting itself, whereas the bot senses
only direction);

(d) bias induced by data quantity: a
human player has almost always a
medium health level (which is due to
a poor choice of discretisation for the
health level variable), which explains
higher values in the learnt table 4 (line
of light gray cells). The discretisa-
tion is subject to the following con-
straints: its being too fine makes spec-
ifying behaviours by hand harder; it
also slows down inference, and increase
the amount of data necessary to learn
the model; on the other hand, a coarse
discretisation impedes the expressive-
ness of the model, by coagulating sen-
sory states too different from one an-
other. A rule to choose discretisation
is therefore to take a (possibly non-
linear) scale where real values from
two successive steps are deemed qual-
itatively different by a human player.
For instance, the health level could be
better split in the following way: very
low beneath 70, low between 71 and
95, medium between 96 and 110, high
between 111 and 130, very high above
131.

4. our learning methods lead to functioning

behaviours; learning using behaviour recog-
nition scores best, and allows to reach the
level of an average native UT bot.

H\ Sim A SW  SH  Ez F DD
Low 0.179 0.342 0.307 0.191 0.457 0.033
Medium  0.478 0.647 0.508 0.486 0.395 0.933
High  0.343 JOIOBIY 0.185 0.323 0.148 0.033
Table 4

learnt P(H|S¢+1)

5. Discussion

5.1. Evaluation

We shall now come back to the objectives we
listed at the beginning, to try and assess our
method in practical terms.

5.1.1. Development Team’s Viewpoint

Programming efficiency. Our method of be-
haviour design relies upon a clear theoreti-
cal ground. Programming the basic model
can use a generic bayesian programming li-
brary, and needs afterwards little more than
the translation into C++ (for instance) of
the mathematical model. Design is really
expressed in terms of practical questions to
the expertise of the designer, like “if the bot
is attacking, how high is his health level?”;
it does not require a preliminary formalisa-
tion of the expected behaviour to program.
Moreover, in our model behaviours are data
(our tables). It means that they can easily
be loaded and saved while the behaviour is
running, or exchanged amongst a commu-
nity of players or developers.

Limited computation requirements. The
computation time needed for a decision un-
der our model can be shown to be linear in
both the number of sensory variables and
the number of states.

Design / Development separation. De-
velopment amounts to incorporating the
bayesian framework into the control ar-
chitecture, and establishing the bayesian
model; design consists in establishing rela-
tions between the variables in the form of
probability distributions. A designer really
has to know about what the bot should do,
but does not need any knowledge of the im-
plementation details; he needs but a light



background on probabilities, and no script-
ing or programming at all.

Behaviour tunability. We have seen that our
way of specifying behaviours gives a natural
way to formalise human expertise about be-
haviours, and that it implies that tuning a
behaviour is possible, as they are expressed
in natural terms and not in artificial logical
or scripting terms. Moreover, the quantity
of data needed to describe a behaviour is
kept small compared to an FSM, and this
helps keeping the analysis and control of a
behaviour tractable for the designer.

5.1.2. Player’s Viewpoint
“Humanness”. This criterion is hard to assess,
although it can be done [16] in ways compa-
rable to the Turing test [17]. Our method
of specifying a behaviour helps the designer
translate his expertise easily, and therefore
gives him a chance to build a believable bot.

Behaviour learning. We have seen that learn-
ing under our model is natural: it amounts
to measuring frequencies. This is a chance
for the player to teach its teammate bots
how to play. Recognising high-level states
on the basis of low-level commands is pos-
sible, and allows a player to adjust a be-
haviour completely transparently, with the
original controls of the game.

5.2. Perspectives

We have shown a way to specify FSM-like ac-
tion selection models for virtual robots, and to
learn these models by example. The recognition
involved in learning from the natural actions of
a player in the game remains a classicaly pro-
grammed heuristic; an obvious perspective is to
formalise it within the bayesian framework, in or-
der to perform probabilistic behaviour recogni-
tion. This would grant more adaptability to vari-
ations in the behaviour model.

REFERENCES

1. G. Kaminka, et al., Gamebots: the ever-
challenging multi-agent research test-bed,
Communications of the ACM.

10.

11.

12.

13.

14.

15.

16.

17.

S. Woodcock, Game Al : The state of the in-
dustry 2000-2001, Game Developer.

J. Laird, Design goals for autonomous syn-
thetic characters, draft (2000).

Baldur’'s  gate  scripting, Site  web,
http://www25.brinkster.com/iesdp/.

J. E. Laird, It knows what you’re going to do :
Adding anticipation to a quakebot, in: AAAI
Spring Symposium Technical Report, 2000.
S. Woodcock, Flocking with teeth : Preda-
tors and prey, in: M. Deloura (Ed.), Game
Programming Gems 2, Charles River Media,
2001, pp. 330-336.

Neural Network AI for Colin McRae
Rally 2.0, Website (Generation5),
www.generation5.org/content/2001/hannan. asp.
Artificial intelligence: Black
and white, Website (Gamespot),

WWW.gamespot . com/gamespot/features/pc/
hitech/p2.01.html.

E. Dysband, A generic fuzzy state machine in
C++, in: M. Deloura (Ed.), Game Program-
ming Gems 2, Charles River Media, 2001, pp.
337-341.

Unrealscript language reference, Website,
unreal.epicgames.com/UnrealScript.htm.

O. Lebeltel, P. Bessiere, J. Diard, E. Mazer,
Bayesian Robot Programming, Autonomous
Robots.

E. T. Jaynes, Probability theory: the logic of
science, unprinted book, available on-line at
http://bayes.wustl.edu/ (1995).

M. Jordan (Ed.), Learning in Graphical Mod-
els, MIT Press, 1998.

E. Dysband, A finite-state machine class, in:
M. Deloura (Ed.), Game Programming Gems,
Charles River Media, 2000, pp. 237-248.

M. Zarozinski, Imploding combinatorial ex-
plosion in a fuzzy system, in: M. Deloura
(Ed.), Game Programming Gems 2, Charles
River Media, 2001, pp. 342-350.

J. E. Laird, J. C. Duchi, Creating human-
like synthetic characters with multiple skill-
levels : A case study using the Soar quakebot,
in: AAAT Fall Symposium Technical Report,
2000.

A. M. Turing, Computing machinery and in-
telligence, Mind 59 (236) (1950) 433-460.



Journal of Artificial Intelligence Research 9 (1998) 295-316 Submitted 9/97; published 11/98

The Ariadne’s Clew Algorithm

Emmanuel Mazer EMMANUEL.MAZERQIMAG.FR
Laboratoire GRAVIR,

INRIA 665 Avenue de L’Europe

38330 Montbonnot, France

Juan Manuel Ahuactzin JMAL@MAIL.UDLAP.MX
Depto. de Ing. en Sistemas Computationales

Unversidad de las Americas

Puebla, Cholula, Puebla 72820, Mexico

Pierre Bessiére PIERRE.BESSIEREQIMAG.FR
Laboratoire LEIBNIZ,

46 Avenue Felix Viallet

38000 Grenoble, France

Abstract

We present a new approach to path planning, called the “Ariadne’s clew algorithm”.
It is designed to find paths in high-dimensional continuous spaces and applies to robots
with many degrees of freedom in static, as well as dynamic environments — ones where
obstacles may move. The Ariadne’s clew algorithm comprises two sub-algorithms, called
SEARCH and EXPLORE, applied in an interleaved manner. EXPLORE builds a representation
of the accessible space while SEARCH looks for the target. Both are posed as optimization
problems. We describe a real implementation of the algorithm to plan paths for a six
degrees of freedom arm in a dynamic environment where another six degrees of freedom
arm is used as a moving obstacle. Experimental results show that a path is found in about
one second without any pre-processing.

1. Introduction

The path planning problem is of major interest for industrial robotics. A basic version of
this problem consists of finding a sequence of motions for a robot from a start configuration
to a given goal configuration while avoiding collisions with any obstacles in the environment.

A simple version of the problem, that of planning the motion of a point robot among
3-dimensional polyhedral obstacles, has been proved to be NP-complete (Canny, 1988).
Generally speaking, the complexity of the problem is exponential in the number of degrees of
freedom (DOF) of the robot, and polynomial in the number of obstacles in the environment.
Consequently, finding a path for a robot with many DOF (more than five) in an environment
with several obstacles is, indeed, a very difficult problem. Unfortunately, many realistic
industrial problems deal with robots of at least six DOF and hundreds of obstacles. Even
worse, often the environment is dynamic in the sense that some of the obstacles may move,
thereby further requiring that new paths be found in very short computing times.

©1998 AT Access Foundation and Morgan Kaufmann Publishers. All rights reserved.



MAZER, AHUACTZIN, & BESSIERE

In this paper, we present a new approach to path planning, called the “Ariadne’s clew
algorithm 7. The approach is completely general and applies to a broad range of path
planning problems. However, it is particularly designed to find paths for robots with many
DOF in dynamic environments.

The ultimate goal of a planner is to find a path from the initial position to the target.
However, while searching for this path, the algorithm may consider collecting information
about the free space and about the set of possible paths that lie in that free space. The
Ariadne’s clew algorithm tries to do both at the same time: a sub-algorithm called EXPLORE
collects information about the free space with increasingly fine resolution, while, in parallel,
an algorithm called SEARCH opportunistically checks whether the target can be reached.

The EXPLORE algorithm works by placing landmarks in the searched space in such a
way that a path from the initial position to any landmark is known. In order to learn as
much as possible about the free space, the EXPLORE algorithm tries to spread the landmarks
uniformly all over the space. To do this, it places the landmarks as far as possible from one
another. For each new landmark produced by the EXPLORE algorithm, the SEARCH algo-
rithm checks (with a local method) whether the target can be reached from that landmark.
Both the EXPLORE and SEARCH algorithms are posed as optimization problems.

The Ariadne’s clew algorithm is efficient and general:

1. The algorithm is efficient in two senses:

(a) Experiments show that the algorithm is able to solve path planning problems fast
enough to move a six DOF arm in a realistic and dynamic environment where
another six DOF robot is used as a moving obstacle.

(b) It is well suited for parallel implementation and shows significant speed-up when
the number of processors increases.

2. The algorithm is general in two senses:

(a) It may be used for a wide range of applications in robotics with little additional
effort to adapt it.

(b) Finally, the algorithm is general in that it may be adapted for a large range of
search problems in continuous spaces that arise in fields that are not related to
robotics.

The paper is organized as follows. Section 2 presents the path planning problem and
discusses related work. Section 3 presents the principle of the Ariadne’s clew algorithm.
Section 4 describes the application of the algorithm to a six DOF arm in a dynamic envi-
ronment. Finally, Section 5 concludes the paper with a discussion of the contributions of
our approach, the main difficulties involved, and possible improvements of our method.

1. According to Greek legend, Ariadne, the daughter of Minos, King of Crete, helped Theseus kill the
Minotaur, a monster living in the Labyrinth, a huge maze built by Daedalus. The main difficulty faced
by Theseus was to find his way through the Labyrinth. Ariadne brilliantly solved the problem by giving
him a thread (or a clew) that he could unwind in order to find his path back.

296



THE ARIADNE’S CLEW ALGORITHM

2. The Path Planning Problem

Many versions of the path planning problem exist. An exhaustive classification of these
problems and of the methods developed to solve them can be found in a survey by Hwang
and Ahuja (1992). We choose to illustrate our discussion with a particular case. A robot
arm is placed among a set of obstacles. Given an initial and a final position of the robot
arm, the problem is to find a set of motions that will lead the robot to move between the
two positions without colliding with the obstacles.

To drive the robot amidst the obstacles, early methods (Brooks, 1983) directly used the
3D CAD models of the robot and of the obstacles to find a solution, i.e., they considered the
“operational 3D space”. In this space, the path planning problem consists of finding the
movements of a complex 3D structure (the robot) in a cluttered 3D space.

A major advance was to express the problem in another space known as the configuration
space, denoted by C (Lozano-Pérez, 1987). In this space, the position (or configuration)
of a robot is completely determined by a single point having n independent parameters
as coordinates. The positions that are not physically legal (because of a collision) are
represented by particular regions of C, and are called C-obstacles. In the configuration
space, the path planning problem consists of finding a continuous curve (representing a
path for a single geometrical point) that (i) connects the points representing the initial and
the final configuration of the robot, and (ii) does not intersect any C-obstacles. This method
trades a simplification of the path planning problem (it searches a path for a single point)
against a higher-dimensional search space (the dimension of C is the number DOF of the
robot) and against more complex shapes of obstacles (very simple physical obstacles may
result in very complex C-obstacles).

For example, let us consider the planar arm of Figure 1. Its position among the obstacles
is totally known once the values of the angles between its links (qo, ¢1) are known. Thus, for
each pair (qo, q1), it is possible to decide whether the robot collides with the surrounding
obstacles. This is what we did in Figure 2 to represent the mapping between the physical
obstacles in the operational space and the C-obstacles. Now, by moving a point along the
curve joining ¢, and ¢y one will also define a collision-free motion for the planar arm between
the corresponding positions P(g,) and P(gs) in the operational space. This curve is one
solution to this particular path planning problem.

A recent trend in the field is to consider the “trajectory space” (Ferbach, 1996) where
a whole path is represented by a single point. The coordinates of this point are the values
of the parameters defining the successive movements of the robot. For instance, the list of
successive commands sent to the robot controller indeed encode an entire path of the robot.
In this space, the path planning problem is reduced to the search for a single point. Once
again, we trade a simplification of the path planning problem (searching for a point) against
a higher dimension of the search space (the dimension of the trajectory space is the number
of parameters needed to specify completely a whole path). For example, in Figure 2, the
path between ¢, and ¢z can be represented by a point in a seven-dimensional space simply
by considering the length of its seven segments.

297



MAZER, AHUACTZIN, & BESSIERE

By

Figure 1: A two DOF arm placed among obstacles in the operational space

2.1 Global Approaches

Global approaches are classically divided into two main classes: (i) retraction methods, and
(ii) decomposition methods. In the retraction methods, one tries to reduce the dimension of
the initial problem by recursively considering sub-manifolds of the configuration space. In
the decomposition methods, one tries to characterize the regions of the configuration space
that are free of obstacles. Both methods end up with a classical graph search over a discrete
space. In principle, these methods are complete because they will find a path if one exists
and will still terminate in a finite time if a path does not exist. Unfortunately, computing
the retraction or the decomposition graph is an NP-complete problem: the complexity of
this task grows exponentially as the number of DOF increases (Canny, 1988). Consequently,
these planners are used only for robots having a limited number (three or four) of DOF. In
addition, they are slow and can only be used off-line: the planner is invoked with a model
of the environment, it produces a plan that is passed to the robot controller which, in turn,
executes it. In general, the time necessary to achieve this is not short enough to allow the
robot to move in a dynamic environment.

2.2 Path Planning with Local Planners

One way to combat the complexity of the problem is to trade completeness against perfor-
mance. To do this, the local planners are guided by the gradient of a cost function (usually
the Euclidean distance to the goal) and take into account the constraints introduced by the
obstacles to avoid them (Faverjon & Tournassoud, 1987). Since the path planning problem
is NP-complete, knowing the cost function, it is always possible to design a deceptive envi-
ronment where the method will get trapped in a local minimum. However, these methods
are useful in many industrial applications because they can deal with complex robots and

298



THE ARIADNE’S CLEW ALGORITHM

q0
Cfree(ib

4a

) ez, W, []cs;

q

Figure 2: The configuration space corresponding to Figure 1. Note: (1) C is a torus, (2)
it is divided into two regions Cfreeéa and Cfreeéb that cannot be connected by
a continuous path, and (3) there is not a C-obstacle for B; because it does not
interfere with the arm.

environment models having thousands of faces, that are often too time-consuming for global
methods.

2.3 Path Planning with Randomized Techniques and Landmarks

The stochastic or random approach was first introduced by Barraquand and Latombe (1990),
and later used by Overmars (1992), and more recently by Kavraki (1996). The main idea
behind these algorithms is to build a graph in the configuration space. The graph is ob-
tained incrementally as follows: a local planner is used to try to reach the goal. Should
the motion stop at a local minimum, a new node (or landmark) is created by generating
a random motion starting from that local minimum. The method iterates these two steps
until the goal configuration has been reached from one of these intermediary positions by
a gradient descent motion. These algorithms work with a discretized representation of the
configuration space. They are known to be probabilistically complete because the probability
of terminating with a solution (a path has been found or no path exists) converges to one
as the allowed time increase towards infinity. As in the previous section, it is also possible
to design simple deceptive environments that will make this kind of algorithm slower than
a pure random approach. However, they have been tested for robots with a high num-
ber of DOF and they have been shown to work quickly in relatively complex and natural
environments.

Other methods using landmarks have been devised. For example, SANDROS, introduced
by Chen and Hwang(1992), makes use of landmarks to approximate the free space. This
approach is similar to the “hierarchical planning” approach used in A1: should the method

299



MAZER, AHUACTZIN, & BESSIERE

fail to reach a goal, new subgoals are generated until the problem is easy enough to be
solved. In their approach, first a local planner is used to reach the final position: should the
local planner fail, the configuration space is divided into two subspaces, one containing the
goal and the other a new sub-goal. The problem is therefore divided into two sub-problems:
(i) going from the initial position to the subgoal, and (ii) going from the subgoal to the
final position. SANDROS has been shown to be particularly well adapted to find paths for
manipulators. It has been implemented and tested for planning paths for Puma and Adept
robots.

2.4 Path Planning in the Trajectory Space

The previous methods were essentially based on the configuration space: the retraction, the
decomposition, or the optimization is made in this space. An alternative is to consider the
“trajectory space”. For example, in his method vDP, Ferbach (1996) starts by considering
the straight line segment joining the initial and the final configuration in C. This path is
progressively modified in such a manner that the forbidden regions it crosses are reduced.
At each iteration, a sub-manifold of C containing the current path is randomly generated.
It is then discretized and explored using a dynamic programming method that uses the
length across the forbidden region as the cost function in order to minimize. The search
results in a new trajectory whose intersection with the forbidden regions is smaller than the
original trajectory. The process is repeated until an admissible trajectory is found. As in
the previous sections, it is also possible to design simple deceptive environments that will
make this kind of algorithm slower than a pure random approach.

The work of Lin, Xiao, and Michalewicz (1994) is similar to our approach. As in an early
version of our algorithm (Ahuactzin, Mazer, Bessiére, & Talbi, 1992), genetic algorithms are
used to carry out optimization in the trajectory space. Trajectories are parameterized using
the coordinates of intermediary via-points. An evolutionary algorithm is used to optimize
a cost function based on the length of the trajectory and the forbidden region crossed.
The standard operators of the genetic algorithms have been modified and later extended
to produce a large variety of paths (Xiao, Michalewicz, & Zhang, 1996). The number of
intermediary via-points is fixed and chosen using an heuristic. Given this number, nothing
prevents to design a deceptive problem which solution will require more intermediary points,
leading the algorithm to fail while one solution exists.

3. Principle of the Ariadne’s Clew Algorithm

As we have seen in the previous section, the computation of the configuration space C is a
very time-consuming task. The main idea behind the Ariadne’s clew algorithm is to avoid
this computation. In order to do this, the algorithm searches directly for a feasible path in
the trajectory space. The configuration space C is never explicitly computed.

As will be shown, in the trajectory space, path planning may be seen as an optimization
problem and solved as such by an algorithm called SEARCH. It is possible to build an
approximation of free space by another algorithm called EXPLORE that is also posed as
an optimization problem. The Ariadne’s clew algorithm is the result of the interleaved
execution of SEARCH and EXPLORE.

300



THE ARIADNE’S CLEW ALGORITHM

Go = (vayf)

Figure 3: A parameterized trajectory (6',d',0%,d?,...6',d") and a starting point g implic-
itly define a path (in the operational space) for a holonomic mobile robot.

3.1 Path Planning as an Optimization Problem: SEARCH

Given a robot with & DOF, a trajectory of length [ may be parameterized as a sequence
of n = k % [ successive movements. A starting point §, along with such a parameterized
trajectory implicitly define a path and a final configuration §; in the configuration space.
For example, for a holonomic mobile robot the trajectory (6',d!,62, d?,...0',d") can be
interpreted as making a ' degree turn, moving straight d', making a #? degree turn and
so on. Given the starting configuration ¢,, this trajectory leads to the final configuration ¢
(see Figure 3).

Given a distance function d on the configuration space, if we find a trajectory such that
it does not collide with any obstacles and such that the distance between ¢; and the goal ¢,
is zero, then we have a solution to our path planning problem. Therefore, the path planning
problem may be seen as a minimization problem where:

1. The search space is a space of suitably parameterized trajectories, the trajectory space.

2. The function to minimize is d(§;, e ) if the path is collision-free, and d(§;, ¢s) otherwise
(¢; being the first collision point).>2

2. Another possible choice would be to give the 400 value to the distance when a collision occurs. However,
this is less informative than the chosen function because the first part of a colliding path could be a
good start toward the goal and should not be discarded. Note that the cost function does not include
any optimality criteria such as the length of the trajectory or the amount of energy used.

301



MAZER, AHUACTZIN, & BESSIERE

The algorithm SEARCH, based on this very simple technique and a randomized optimiza-
tion method, is already able to solve quite complex problems of robot motion planning. For
example, Figure 4 represents the two paths found for the holonomic mobile robot. Each
path was computed on a standard workstation (SPARC 5) in less than 0.5 second without
using any pre-computation of the configuration space. Thus, it is possible, albeit slowly, to
get a planner that can be used in a dynamic environment (where the obstacles may move)
by “dropping” a new world into the system every 0.5 second. SEARCH is very efficient but it
is not complete, since it may fail to find a path even if one exists for two different reasons:

1. Due to the optimization-based formulation, SEARCH can get trapped by local minima

of the objective function, which in turn may place the robot far away from the goal
(see Figure 5).

2. The length [ of the trajectories considered may be too short to reach all the accessible
regions of the configuration space.

I petit robot I petit robot

I
i ey
<

-|-|-l-"‘-'-‘l

B>

Figure 4: Reactive replanning in a changing environment

3.2 Exploring as an Optimization Problem: EXPLORE

In order to build a complete planner, we propose a second algorithm called EXPLORE. While
the purpose of SEARCH was to look directly for a path from §, to ds, the purpose of EXPLORE
is to compute an approximation of the region of the configuration space accessible from go.

The EXPLORE algorithm builds an approximation of the accessible space by placing
landmarks in the configuration space C in such a way that a path from the initial position
go to any landmark is known. In order to learn as much as possible about the free space, the
EXPLORE algorithm tries to spread the landmarks uniformly over the space (see Figure 6).

To do this, it tries to put the landmarks as far as possible from one another by maximizing
the distances between them.

Therefore, EXPLORE may be seen as a maximization problem where:

302



THE ARIADNE’S CLEW ALGORITHM

Figure 5: A problem leading to a local minimum. In such a case, a solution path has first
to move away from the goal. The goal’s “attraction” based on the minimization
of the Fuclidean distance prevents SEARCH from finding such a path.

AL 12 ]
[] il N
Gl Sy

¥ v B

Figure 6: The first picture represents the initial position and the first landmark. The sub-
sequent landmarks are then uniformly spread over the search space while the
method keeps track of all paths joining the landmarks to the initial position.
The algorithm is named after Ariadne because by placing landmarks, EXPLORE
unwinds as if it were using a thread as Theseus did.

1

1. The search space is the set of all paths starting from one of the previously placed
landmarks.

2. The function to maximize is d(§;, A), where A is the set of landmarks already placed.

3.3 The Ariadne’s Clew Algorithm: EXPLORE + SEARCH

In order to have a planner that is both complete and efficient, we combined the two previous
algorithms SEARCH and EXPLORE to obtain the Ariadne’s clew algorithm.
The principle of the Ariadne’s clew algorithm is very simple:

1. Use the SEARCH algorithm to find whether a “simple” path exists between ¢, and g,.

303



MAZER, AHUACTZIN, & BESSIERE

2 2

1 A

Figure 7: Bouncing against C-obstacles. Figure (a) presents the original path in the con-
figuration space. Figure (b) shows the same path after two bounces along the
second segment on obstacle 2 and on obstacle 1. Figure (c) is the result obtained
after a bounce of segment 3 against obstacle 2. Finally, Figure (d) presents a
valid path obtained after a final bounce of segment 4 against obstacle 2.

2. If no “simple” path is found by step 1, then continue until a path is found.

(a) Use EXPLORE to generate a new landmark.

(b) Use SEARCH to look for a “simple” path from that landmark to g,.

The Ariadne’s clew algorithm will find a path if one exists. In an overwhelming number
of cases, just a few landmarks are necessary for the Ariadne’s clew algorithm to reach the
target and stop.

3.4 A Major Improvement: Bouncing on C-Obstacles

A typical difficulty for a path planning algorithm is to find a collision-free path through
a small corridor in the configuration space. This is also the case for the basic version of
the Ariadne’s clew algorithm, presented above. The problem is that very few trajectories
encode such paths and therefore they are very difficult to find. Most trajectories collide with
the obstacles. We propose a very simple idea to deal with this problem: going backwards at
each collision point. If, for a given trajectory, a collision is detected along the corresponding
path, then we simply consider transforming that trajectory so that it encodes a new path,
one that is found by bouncing off the obstacle at the collision point (see Figure 7). Note
that this construction is applied recursively until the entire trajectory corresponds to a
collision-free path.

304



THE ARIADNE’S CLEW ALGORITHM

Using this technique, all trajectories are so transformed that they encode valid paths.
This improved version of the Ariadne’s clew algorithm no longer cares about obstacles. From
the point of view of a search in the trajectory space, it is as if the obstacles have simply
vanished. This method is especially efficient for narrow corridors in the configuration space.
Without bouncing, the mapping of a corridor in the configuration space to the trajectory
space is a set of very few points. With bouncing, every single trajectory going through a
part of the corridor is “folded” into the corridor (see Figure 7). The resultant mapping
of the corridor in the trajectory space is consequently a much larger set of points, and
therefore it is much easier to find a member of this set. This empirical improvement has
a major practical impact because it makes the proposed algorithm faster (fifteen times) in
the problem considered below.

3.5 The Algorithm

We can now give a final version of the Ariadne’s clew algorithm. It has three inputs: ¢,
(the initial position), ¢, (the goal position), and p (the maximum allowed distance for a
path to the C-obstacles). It returns a legal path or terminates if no path exists at the given
resolution.

ALGORITHM_ARIADNE(go, o, p)
begin
i =1 = o
/* Initialize the set of landmarks with the initial position
A= {:\1}; €1 = +00;
do while (g; > p);
/* run SEARCH : look for the goal with a local method
if (minye e d(da, d(0)) == 0)
return; /* A path has been found !
else
/* run EXPLORE : place a new landmark
1 = 1+ 1
Ai = q s supepe d(Ai—1, 4(1));
Ai = A U{ A
g; := d(Ni—1, \i);
endif
enddo
A=Ay
€ = &j;
return(e); /* No path !
end

Figure 8: The Ariadne’s Clew Algorithm

305



MAZER, AHUACTZIN, & BESSIERE

The algorithm is based on the following optimization problems:

.} sup d(Ai1,4(1))
EXPLORE.{ g

. ) min d(4(1), )
SEARCH : { le Rt

G(l) denotes the extremity of a legal path parameterized with £ real parameters and
starting either from each of the previously placed landmarks (EXPLORE) or from the latest
placed landmark (SEARCH).

The algorithm is resolution-complete under the following assumptions:

e “Space filling completeness”: The global maximum distance can be found by the
optimization algorithm used in EXPLORE; the configuration space is a compact set.

e “p completeness”: The optimization procedure used in SEARCH always find a complete
path (or returns 0) when the starting and the goal positions are located within a ball
of radius p of the free space.

In practice, the first condition cannot be met with a randomized optimization algorithm
in a bounded time, and only local maxima are found. However, the landmarks placed
according to the new algorithm are better distributed over the free space than landmarks
placed randomly, leading to better performances. The goal of the next section is to justify
this claim, experimentally.

4. Path Planning for a Six DOF Arm in a Dynamic Environment

In order to demonstrate the feasibility and qualities of the Ariadne’s clew algorithm, we
have developed a realistic application of the algorithm. We selected a problem where we
want to have a path planner for a six DOF robot arm in a dynamic environment where
another arm is used as a mobile obstacle. The robot (robot A) is under the control of the
Ariadne’s clew algorithm. It shares its workspace with a second robot (robot B) that is
moving under the control of a random motion generator. The Ariadne’s clew algorithm
must be able to compute paths for A in “real time” (here, real time means fast enough to
ensure that robot A will never collide with robot B).

In order to reach such a level of performance, we chose to implement the Ariadne’s
clew algorithm on a massively parallel machine (Meganode with 128 T800 Transputers).
Furthermore, we selected a genetic algorithm as our optimization technique. The reasons
for this choice are:

1. Genetic algorithms are well suited for problems where the search space is huge but
where there are many acceptable solutions. This is exactly the case here. The tra-
jectory space is huge but there are, barring exceptional cases, numerous acceptable
paths going from §, to ¢, without collision.

306



THE ARIADNE’S CLEW ALGORITHM

2. Genetic algorithms, unlike a number of the other optimization techniques (Bessiére,
Talbi, Ahuactzin, & Mazer, 1996), are very easy to implement on parallel architec-
tures. We have previously developed a parallel genetic algorithm (PGA) and we have
already had significant experience using it (Talbi, 1993).

3. PGA, unlike most parallel programs, shows linear speed-up (when you double the
number of processors you reduce the computation time by half) and even super-linear
speed-up under certain circumstances (Talbi & Bessiére, 1996).

4.1 Parallel Genetic Algorithm

Genetic algorithms are stochastic optimization techniques introduced by Holland (1975)
twenty years ago. They are used in a large variety of domains including robotics (Ahuactzin
et al., 1992; Lawrence, 1991; Falkenauer & Bouffouix, 1991; Falkenauer & Delchambre, 1992;
Meygret & Levine, 1992) because they are easy to implement and do not require algebraic
expression for the function to be optimized.

4.1.1 PRINCIPLE OF GENETIC ALGORITHM

The goal of the algorithm is to find a point reaching a “good” value of a given function F
over a search space S. First, a quantization step is defined for S and the search is conducted
over a discrete subset, S; of S. S; contains 2V elements. In practice, the cardinality of S
can be eztremely large. For example, in our implementation of EXPLORE, N = 116. Thus,
a continuous domain is discretized with a given resolution.

During an initialization phase a small subset of S; is drawn at random. This subset is
called a population. Each element of this population is coded by a string of N bits.

The genetic algorithm iterates the following four steps until a solution is found.

1. Evaluation: Rank the population according to the value of F' for each element of S;.
Decide if the best element can serve as an acceptable solution; if yes, exit.

2. Selection: Use the function F' to define a probability distribution over the population.
Select a pair of elements randomly according to this probability distribution.

3. Reproduction: Produce a new element from each pair using “genetic” operators.

4. Replacement: Replace the elements of the starting population by better new ele-
ments produced in step 3.

Many genetic operators (Davidor, 1989) are available. However, the more commonly
used are the mutation and the cross-over operators. The mutation operator consists of
randomly flipping some bits of an element of the population. The cross-over operator
consists of first randomly choosing a place where to cut the two strings of bits, and then
building two new elements from this pair by simply gluing the right and the left parts of
the initial pair of strings (see Figure 9).

We use both operators to produce new elements. First, we use the cross-over operator
to get an intermediate string. Then, the mutation operator is used on this intermediate
string to get the final string.

307



MAZER, AHUACTZIN, & BESSIERE

PARENTS NEW ELEMENTS

Cross—over

Figure 9: The cross-over operation.

4.1.2 PRINCIPLE OF THE PARALLEL GENETIC ALGORITHM (PGA)

There are many parallel versions of genetic algorithms: the standard parallel version (Robert-
son, 1987), the decomposition version (Tanese, 1987) and the massively parallel version (Talbi,
1993). We chose this last method. The main idea is to allocate one element of the popula-
tion for each processor so that steps 1, 3, and 4 can be executed in parallel. Furthermore,
the selection step (step 2) is carried out locally, in that each individual may mate only
with the individuals placed on processors physically connected to it. This ensures that the
communication overhead does not increase as the number of processors increases. This is
the reason why PGA shows linear speed-up.

The parallel genetic algorithm iterates the following four steps until a solution is found.

1. Evaluation: Evaluate in parallel all the individuals.
2. Selection: Select in parallel, among the neighbors, the mate with the best evaluation.
3. Reproduction: Reproduce in parallel with the chosen mate.

4. Replacement: Replace in parallel the parents by the offspring.

On the Meganode, we implemented the PGA on a torus of processors where each indi-
vidual has four neighbors (see Figure 10)

4.2 Parallel Evaluation of the Cost Function

The evaluation functions used in SEARCH and EXPLORE are very similar: they both compute
the final position of the arm given a Manhattan path of a fixed order. In our implementation,
based on experience, we chose to use Manhattan paths of order 2. Order 2 appeared
to be a good compromise between the number of landmarks needed (increases as order
decreases) and the computing time necessary for the optimization functions (increases as
order increases). Since our robot has six DOF, the argument of the cost function in SEARCH is
a vector in R'2: (A1, AL, ... AL ... A2 ... A2) and the argument of the cost function used
for EXPLORE is a vector in IN x IR'? : (i,Al, A} .. A}, ... A2 ... A2) where i codes the
landmark used as a starting point for the path. In both cases the functions are defined only
on a bounded subset of IR'? and IN x IR'?, whose limits are fixed by the mechanical stops
of the robot and the maximum number of landmarks. A discretization step is chosen for
these two subsets by defining the resolution at which each elementary motion is discretized.

308



THE ARIADNE’S CLEW ALGORITHM

L
-
L
-
L

L |
]
L]
]
L |
] ] ] [\]i
Hypiint

"HOST"

L]
]
L]
[ ]
L]

il

"ROOT"

iy
=

N e

INDIVIDUALS

5

Figure 10: A torus with sixteen processors. One individual is placed on each processor.
Each individual has four neighbors.

In our case, each Ag is discretized with 9 bits and the number of landmarks is limited to
256. Thus, given a binary string of 116 = 8 4+ 12 x 9 bits, we can convert it into a vector
(as an argument) for the cost function of SEARCH, or EXPLORE, respectively.

Manhattan paths are evaluated in a simplified model of the environment. This model
is obtained by enclosing each element of the scene into a bounding rectangular box.

The evaluation of a vector is performed as follows:

For each Al in (A1, AL, .., AL, ..., A} ... A2)
Compute the limits on the motion for joint ;.

Compute A*g , by bouncing on these limits (see Section 3.4).
Update the position of the robot.

The limits on the motion of joint ¢ are obtained by merging the legal ranges of motion
of all the links that move when joint ¢ moves, and all the obstacles. To obtain a legal range
of motion between a link and an obstacle, we consider the two enclosing parallelepipeds and
express their coordinates in the joint frame. Then, we use a classical method to compute
the range (Lozano-Pérez, 1987).

In our parallel implementation, we distributed the geometric computations among sev-
eral processors. Each processor is dedicated to the computation of a single type of interac-
tion.

4.3 Parallel Implementation of the Ariadne’s Clew Algorithm

Finally, the Ariadne’s clew algorithm is implemented in parallel with three levels of paral-
lelism.

1. Obviously, a first level of parallelization can be obtained by running SEARCH and
EXPLORE at the same time on two sets of processors. While SEARCH is checking

309



MAZER, AHUACTZIN, & BESSIERE

whether a path exists between the last placed landmark and the goal, EXPLORE is
generating the next landmark.

2. The second level of parallelism corresponds to a parallel implementation of both ge-
netic algorithms employed by SEARCH and EXPLORE to treat their respective opti-
mization problems.

3. The third level corresponds to a parallelization of the collision checking function and
range computation.

We completed a full implementation of these three levels on a Meganode with 128 T800
transputers. Figure 11 represents our parallel implementation of the Ariadne’s clew algo-
rithm and Figure 12 shows how we have embedded this architecture into our experimental
setup. A CAD system (ACT) is used to model the scene with the two robots. The robots
are under the control of KALI (Hayward, Daneshmend, & Hayati, 1988). First, a simplified
geometric model of the scene is downloaded into the memory of the transputers. Then, a
Silicon Graphics workstation works as a global controller and loops over the following steps:

1. Generate and execute a legal random motion for robot B.

2. Send the new configuration of robot B to the Meganode as well as the desired final
configuration for robot A.

3. Get the planned path for robot A from the Meganode and execute it.
4. Wait for a random time and stop robot A.

5. Go to 1.

This sequence allows us to test our algorithm extensively in real situations by having
to deal with many different environments. Of course, the most interesting figure we can
obtain from this experiment is the mean time necessary to compute one path given a new
environment. For this experimental setup this mean time is 1.421 seconds. Using the same
architecture with more up-to-date processors (T9000) would reduce this time by a factor of
ten. The same computation on a single processor (SPARC 5) would take three times longer
than the current implementation.

In summary, we have achieved our main goal by proving that it is indeed possible (with
the Ariadne’s clew algorithm) to plan collision-free paths for a real robot with many DOF in
a dynamic realistic environment.

5. Conclusion: Contributions, Difficulties, and Perspectives

As mentioned in the Introduction, the Ariadne’s clew algorithm has two main qualities:
efficiency, and generality. Let us, in conclusion, explain and discuss these two qualities.

310



THE ARIADNE’S CLEW ALGORITHM

Ariadne’s clew algorithm

Master
7 ’ 1 ~ N
L Search i \ Explore N
| .

Gamma

Gamma

\ \
Psi_C \
\
/ ' 2 \
i \ \ ’ ' 3
! ! \ s ! v \
I I
/ ' i \ g / \ \
/ \ / \
/ /
, / J I \ ' \ Y ' / K ' Vo \ N
i I ! L \ \ \ ’ I L \ I \
I \ T v \ i i ] 1 \ B v \
I \ v v \ ' ' / ' ' v ' \
' \ ' \ \ / ' / ' ' ' \ \
' \ i 1 \ ’ I B i \ \ \ \
' \ \ \ \ ! i i ' \ i \ \
I \ \ \ \ ’ ' / 1 \ \ y \
' l ' ' \ / | , ' \ \ \ \
' ' /) ' i ' \ ! v
I \ o / o v
/ I \ /type A et B i \ 1 typeC
) \ I \
I \ ' .
I \ ' \
1 \ ! '
1 1 ! . '
' /__psi_ab \
\ -7 \
\ ! \
1 ! \
1 ' '
\ ! |
\ ! 1
1 ! '
1 ! \
\ ! 1
\ ! '
1 ! 1
1 ! \
I o
- ! -7 '
P ! - \
. ' sic !
. i ¢
psic ! P '
1
|
h
h

Figure 11: A parallel implementation of the Ariadne’s clew algorithm

311



MAZER, AHUACTZIN, & BESSIERE

Robot |

4-' Robot II

h . .

GENETIC ALGORITHM
(SEARCH)

GENETIC ALGORITHM
(EXPLORE)

ACT
CAD SYSTEM

Mega—-Node
128 Transputers

Sun 4
(Unix)

server
VxWorks

Sun 3
(Unix)

server
Mega—-Node

Figure 12: The experimental setup

5.1 Performance

Comparing the performance of this kind of algorithm is a very delicate subject. Performance
may be a matter of computing time, efforts needed to program, or ease of application to
different problems (see Section 5.2). Evaluating the performance in terms of computing

time is very difficult for one fundamental and three practical reasons:

312

laulaylg



THE ARIADNE’S CLEW ALGORITHM

1. The fundamental reason is, once again, the NP-completeness of the path planning
problem. As deceptive cases may always be designed, the only performance results
one may reasonably present are always specific.

2. The three practical reasons are:

(a) Obviously, the first requirement for such a comparison is that different algorithms
run on the same machines with the same available memory. This may seem simple
but it is a main difficulty in our case because our algorithm has been designed
to run on rather specific kinds of machines, namely, massively parallel ones. It
could also be implemented on non-parallel machines, but then it may lose part
of its interest. A fair comparison would be to compare the algorithms on both
types of machines. This would imply programming other algorithms in parallel,
which is very difficult in practice.

(b) Many known path planning algorithms first compute the configuration space
(or an approximation of it) off-line, and then efficiently solve the path planning
problem on-line. As we saw, in order to deal with a dynamic environment, the
Ariadne’s clew algorithm adopts a completely different approach.

(c) For practical reasons, many test problems are toy problems (2D, few obstacles,
few faces, simulated robots) and the performance results using these kinds of
problems are very difficult to generalize to realistic industrial problems (3D, tens
of obstacles, hundreds of faces, real robots).

Considering all these reasons, we tested our algorithm by implementing a realistic robotic
application to the very end. To achieve this goal, we assembled a complex experimental
setup including six different machines (1 MEGANODE, 2 68030, 2 SUN 4, and 1 SILICON
GRAPHICS), two mechanical arms, and running seven different cooperative programs (2
KALI, 1 ACT, 2 VXWORKS, 1 PARX, and 1 Ariadne’s clew algorithm).

Our challenge was to be able to solve the path planning problem fast enough to drive a
real six DOF arm in a dynamic environment. The Ariadne’s clew algorithm indeed achieved
this goal in our experiments where the environment is composed of five fixed obstacles and
a six DOF arm moving independently.

We are not aware of any other methods capable of such performance. To the best of our
knowledge, currently implemented planners would take a number of seconds (ten) to place a
set of landmarks on a 2D example for a robot with five DOF (Kavraki et al., 1996). Despite
the fact that finding a general purpose planning technique for real industrial application is
a very difficult problem, we believe that the Ariadne’s clew algorithm provides an effective
approach to such problems.

The number of range computations for a Manhattan motion of order 1 is C 1922—""“ * 1
where n is the number of faces, £ the number of DOF, and C a constant factor, depending
on the number of parts used to model the robot. Obviously, such a number of faces may be
a severe difficulty for the implementation of the Ariadne’s clew algorithm described so far.
To speed up the computation we use a number of geometric filters that reduce the number
of pairs of entities to be analyzed.

However, it was possible to follow two research tracks in combination. First, we could
use collision checking methods that allow access to the pairs in collision in a logarithmic

313



MAZER, AHUACTZIN, & BESSIERE

time (Faverjon & Tournassoud, 1987). Second, we could preserve part of the landmark
graph when the environment is changing (McLean & Mazon, 1996).

5.2 Generality

The Ariadne’s clew algorithm is general in the sense that it may be used for numerous and
very different applications in robotics. Basically, the main thing that needs to be changed
in the algorithm is the distance d used in the evaluation functions of the two optimization
problems.

Several planners have been implemented in this way: a fine motion planner (De la Rosa,
Laugier, & Najera, 1996), two motion planners for holonomic and non-holonomic mobile
robots (Scheuer & Fraichard, 1997), a reorientation planner for an articulated hand(Gupta,
1995), a planner for grasping and regrasping (Ahuactzin, Gupta, & Mazer, 1998), and a
planner for a robotic arm placed in the steam generator of a nuclear plant (McLean &
Mazon, 1996). Adapting the algorithm to a new application is, therefore, clearly a very
easy task. For instance, the application to path planning for the non-holonomic trailer was
developed in three days.

The Ariadne’s clew algorithm is also general in the sense that it may be used for any kind
of path planning problem in a continuous space, in fields other than robotics. Although it
may be sufficient to change the distance function d, one may also consider changing the form
of the function d, or even the nature of the searched spaces. For instance, the concept of
obstacles may be reconsidered. Instead of “hard” obstacles, one could replace them by zones
of constraints. In that case, the path planning problem does not consist of finding a path
without collisions but rather finding a path best satisfying the different constraints. Such
a planner has been developed for a naval application where the problem was to find a path
for a boat with various constraints on the trajectory. This opens numerous perspectives of
applications for applying the Ariadne’s clew algorithm in a broader field than pure robotics.

Acknowledgments

The authors are greatly indebted to Dr. Kamal Gupta from Simon Fraser University who
carefully read the paper and suggested valuable corrections that greatly improve the quality
of the final paper.

This work has been made possible by: Le Centre National de la Recherche Scientifique
(France), Consejo Nacional de Ciencia y Tecnologia (Mexico) and ESPRIT 2, P2528 (EEC).

References

Ahuactzin, J., Gupta, K., & Mazer, E. (1998). Manipulation Planning for Redundant
Robots: A Practical Approach. The International Journal of Robotics Research,
17(7), 731-747.

Ahuactzin, J., Mazer, E., Bessiére, P., & Talbi, E. (1992). Using Genetic Algorithms for
Robot Motion Planning. In Proceedings of the 1992 FEuropean Conference on Artificial
Intelligence, pp. 671-675.

314



THE ARIADNE’S CLEW ALGORITHM

Barraquand, J., & Latombe, J. (1990). A Monte Carlo Algorithm for Path Planning with
Many Degrees of Freedom. In Proceedings of the 1990 IEEE International Conference
on Robotics and Automation, pp. 1712-1717.

Bessiére, P., Talbi, E., Ahuactzin, J., & Mazer, E. (1996). Un Algorithme Génétique
Parallélle pour ’Optimisation. Technique et Science Informatique, 15(8), 1105-1130.

Brooks, R. (1983). Solving the Find-Path Problem by Good Representation of the Free
Space. IEEE Transactions on System, Man and Cybernetics, 13(4), 190-197.

Canny, J. (1988). The Complezity of Robot Motion Planning. MIT Press.

Davidor, Y. (1989). Analogous Crossover. In Proceedings of the Third International Con-
ference on Genetic Algorithms, pp. 98-103.

De la Rosa, F., Laugier, C., & Najera, J. (1996). Robust Path Planning in the Plane. IEEE
Transactions on Robotics and Automation, 12(3), 347-352.

Falkenauer, E., & Bouffouix, S. (1991). A Genetic Algorithm for Job Shop. In Proceedings
of the 1991 IEEFE International Conference on Robotics and Automation, pp. 824-829.

Falkenauer, E., & Delchambre, A. (1992). A Genetic Algorithm for Bin Packing and Line
Balancing. In Proceedings of the 1992 IEEE International Conference on Robotics
and Automation, pp. 1186-1192.

Faverjon, B., & Tournassoud, P. (1987). A Local Based Approach for Path Planning of
Manipulators with a High Number of Degrees of Freedom. In Proceedings of the 1987
IEEFE International Conference on Robotics and Automation, pp. 1152-1159.

Ferbach, P. (1996). Contribution & la Planification de Trajectoires. Rapport de Recherche
EDF-DER HP-28/96/026, Direction des Etudes et Recherches EDF.

Gupta, K. (1995). Motion Planning for Re-Orientation Using Finger Tracking: Landmarks
in SO(3) x w. In Proceedings of the 1995 IEEE International Conference on Robotics
and Automation, pp. 446—451.

Hayward, V., Daneshmend, L., & Hayati, S. (1988). An Overview of KALL: A System
to Program and Control Cooperative Manipulators. In Proceedings of the Fourth
International Conference on Advanced Robotics, pp. 236—240.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press.

Hwang, Y., & Ahuja, N. (1992). Gross Motion Planning: A Survey. ACM Computing
Surveys, 24(3).

Kavraki, L., Svestka, P., Latombe, J., & Overmars, M. (1996). Probabilistic Roadmaps
for Path Planning in High-Dimensional Configuration Spaces. IEEE Transactions on
Robotics and Automation, 14(4), 566-580.

Lawrence, D. (Ed.). (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold.

315



MAZER, AHUACTZIN, & BESSIERE

Lin, H., Xiao, J., & Michalewicz, Z. (1994). Evolutionary Navigator for a Mobile Robot. In
Proceedings of the 1994 IEEE International Conference on Robotics and Automation,
pp. 2199-2004.

Lozano-Pérez, T. (1987). A Simple Motion-Planning Algorithm for General Robot Manip-
ulators. IEEE Transactions on Robotics and Automation, 3(3), 224-238.

McLean, A., & Mazon, T. (1996). Incremental Roadmaps and Global Path Planning in
Evolving Industrial Environments. In Proceedings of the 1996 IEEE International
Conference on Robotics and Automation, pp. 101-106.

Meygret, A., & Levine, M. (1992). Extraction de Primitives Géométriques: Utilisation
d’un Algorithme Génétique. Rapport Annuel, Center for Intelligent Machines, McGill
University, Montréal.

Overmars, M. (1992). A Random Approach to Motion Planning. Technical Report RUU-
(CS-92-32, Department of Computer Science, Utrecht University.

Robertson, G. (1987). Parallel Implementation of Genetic Algorithms in a Classifier System.
In Davis, L. (Ed.), Genetic Algorithms and Simulated Annealing. Morgan Kaufmann
Publishers.

Scheuer, A., & Fraichard, T. (1997). Continuous-Curvature Path Planning for Car-Like
Vehicles. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 997-1003.

Talbi, E. (1993). Allocation de Processus sur les Architectures Paralléles ¢ Mémoir Dis-
tribuée. Ph.D. thesis, Institut National Polytechnique de Grenoble - France.

Talbi, E., & Bessiere, P. (1996). A Parallel Genetic Algorithm Applied to the Mapping
Problem. In Astfalk, G. (Ed.), Applications on Advanced Architecture Computers.
SIAM.

Tanese, R. (1987). Parallel Genetic Algorithm for a Hypercube. In Proceedings of the Second
International Conference on Genetic Algorithms, pp. 177-183.

Xiao, J., Michalewicz, Z., & Zhang, L. (1996). Evolutionary Planner/Navigator: Operator
Performance and Self-Tuning. In Proceedings of 1996 IEEE International Conference
on Evolutionary Computation, pp. 336-371.

316



	3-Diard_ICRA04.pdf
	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


	header: Proceedings of the 2004 IEEE                                   International Conference on Robotics & Automation      New Orleans, LA • April 2004
	footer: 0-7803-8232-3/04/$17.00 ©2004 IEEE
	01: 3837
	02: 3838
	03: 3839
	04: 3840
	05: 3841
	06: 3842


