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CHAPTER 24

MODEL COMPARISON

\Entities are not to be multiplied without necessity" - - - William of Ockham, ca 1330

We have seen in some detail how to conduct inferences { test hypotheses, estimate parameters,
predict future observations { within the context of a preassigned model, representing some working

hypothesis about the phenomenon being observed. But a scientist must be concerned also with a

bigger problem; how to decide between di�erent models when both seem able to account for the
facts. Indeed, the progress of science requires comparison of di�erent conceivable models; a false

premise built into a model that is never questioned, cannot be removed by any amount of new data.

Stated very broadly, the problem is hardly new; some 650 years ago the Franciscan Monk
William of Ockham perceived the logical error in the Mind Projection Fallacy.y This led him to

teach that some religious issues might be settled by reason, but others only by faith. He removed
the latter from his discourse, and concentrated on the areas where reason might be applied { just

as Bayesians seek to do today when we discard orthodox mind{projecting mythology (such as
assertions of limiting frequencies in experiments that have never been performed), and concentrate

on the things that are meaningful in the real world. His propositions `amenable only to faith'
correspond roughly to what we should call non{Aristotelian propositions (or Aristotelian ones for

which the available information is too meager to permit any inferences). His famous epigram quoted
above, generally called \Ockham's razor", represents a good start on the principles of reasoning

that he needed, and that we still need today. But it was also so subtle that only through modern

Bayesian analysis has it been well understood.

Of course, from our present vantage point it is clear that this is really the same problem as that

of compound hypothesis testing, considered already in Chapter 4. Here we need only generalize
that treatment and work out further details, but some extra care is needed. As long as we work

within a single model, normalization constants tend to cancel out and so need not be introduced

at all. But when two di�erent models appear in a single equation, the normalization constants do
not cancel out, and it is imperative that all probabilities be correctly normalized.

Formulation of the Problem

To see why this happens, recall �rst what Bayes' theorem tells us about parameter estimation. A
modelM contains various parameters denoted collectively by �. Given dataD and prior information

I , and assuming the correctness of model M , to estimate the parameters we �rst apply Bayes'
theorem:

p(�jD;M; I) = p(�jM; I)
p(Dj�;M; I)

p(DjM; I)
(24{1)

in which the denominator serves as the normalizing constant:

y Ockham's position, stated in the language of his time, was that \Reality exists solely in individual
things, and universals are merely abstract signs." Translated into Twentieth Century language: the abstract
creations of the mind are not realities in the external world. Unfortunately for him, some of the cherished
`realities' of contemporary orthodox theology were just the things to which he denied reality; so this got
him into trouble with the Establishment. Evidently, Ockham was a forerunner of modern Bayesians, to
whom all this sounds very familiar.
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p(DjM; I) =

Z
p(D; �jM; I) d� =

Z
p(Dj�;M; I) p(�jM; I) d� (24{2)

which we see is the prior expectation of the likelihood L(�) = p(Dj�;M; I); that is, its expectation
over the prior probability distribution p(�jM; I) for the parameters.

Now we move up to a higher level problem; to judge, in the light of the prior information and
data, which of a given set of di�erent models fM1 � � �Mrg is most likely to be the correct one.

Bayes' theorem gives the posterior probability for the j'th model as

p(Mj jD; I) = p(Mj jI)
p(DjMj ; I)

p(DjI) ; 1 � j � r : (24{3)

But we may eliminate the denominator p(DjI) by calculating instead odds ratios as we did in

Chap. 4. The posterior odds ratio for model Mj over Mk is

p(MjjD; I)
p(MkjD; I)

=
p(Mj jI)
p(MkjI)

� p(DjMj; I)

p(DjMk; I)
(24{4)

and we see that the same probability p(DjMj; I) that appears in the single{model parameter
estimation problem (24{1) only as a normalizing constant, now appears as the fundamental quantity

determining the status of model Mj relative to any other.z The exact measure of what the data
have to tell us about this, is always the prior expectation of its likelihood function, over the

prior probability p(�j jMj ; I) for whatever parameters �j may be in that model (they are generally

di�erent for di�erent models). All probabilities must be correctly normalized here, otherwise we
are violating our basic rules and the likelihood ratio in (24{4) is arbitrary nonsense even when it

is not zero or in�nite.

Intuitively, the model favored by the data is the one that assigns the highest probability to the

observed data, and therefore \explains the data" best. This is just a repetition, at a higher level,
of the likelihood principle for parameter estimation within a model.

But it is not yet clear how an Ockham principle can emerge from this. Indeed, the principle
has never been stated in exact, well{de�ned terms. Later writers have tried, almost universally,
to interpret it as saying that the criterion of choice is the `simplicity' of the competing models,
although it is not clear that Ockham himself used that term. Centuries of discussion by philoso-

phers trying to make this interpretation brought no appreciable clari�cation of what is meant by
`simplicity'.? We think that concentration of attention exclusively on that unde�ned term has pre-
vented understanding of the real point, which is merely that a model with unspeci�ed parameters

is a composite hypothesis, not a simple one. For this reason some interesting new features appear,
arising from the internal structure of the parameter space.

z This logical structure is more general even than the Bayesian formalism; we shall see in Volume 2 that
it persists in the pure maximum{entropy formalism, where in statistical mechanics the relative probability
Pj=Pk of two di�erent phases, such as liquid and solid, is the ratio of their partition functions Zj=Zk , which
are the normalization constants for the sub{problems of prediction within one phase, although they are not
expectations of any likelihoods. In Bayesian analysis, the data are indi�erent between two models when
their normalization constants become equal; in statistical mechanics the temperature of a phase transition
is the one at which the two partition functions become equal. In chemical thermodynamics it is customary
to state this as equality of the \free energies" Fj ' logZj . This illustrates the basic unity of Bayesian and

maximum{entropy reasoning, in spite of their super�cial di�erences.
? Indeed, for a time the notion of `simplicity' was given up for dead, because of the seeming impossibility
of de�ning it. The tedious details are recounted by Rosenkrantz (1977).
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Parameters Known in Advance: To see this, suppose �rst that there is no such internal space;
the parameters of a model are known exactly (� = �0) in advance. This amounts to assigning a

prior p(�j jMjI) = �(�j � �0j), whereupon (24{2) reduces to

p(DjMj ; I) = p(Dj�0
j
;Mj ; I) = Lj(�

0

j
) (24{5)

just the likelihood of �0
j
within the j'th model. Evidently, this will be a maximum if �0

j
happens to

be equal to the maximum likelihood estimate �̂j for that model and the data. Then the posterior
odds ratio (24{4) would reduce to

p(Mj jD; I)
p(MkjD; I)

=
p(Mj jI)
p(MkjI)

� (Lj)max

(Lk)max

(24{6)

This is the conventional Bayes' theorem result of Chapter 4. If the parameters were known to have,
for each model, the most favorable values for the given data set, each model becomes in e�ect a

simple hypothesis rather than a composite one [this is almost self{contradictory, for if the data
were di�erent one would have to suppose also di�erent prior information about the parameters in

order to retain (24{6)].

But this extreme case is also very unrealistic; usually, the parameters are unknown and in

the problems `amenable to reason' where useful inferences are possible, the data D will be more
informative about the parameters within some modelMj than is the prior information; that is, as a

function of �j the likelihood function Lj(�j) = p(Dj�j ;Mj; I) will be more sharply peaked, at some
point picked out by the data, than is the prior probability p(�j jMj ; I). Then in the exact integral

(24{2) most of the contribution will come from a \high likelihood region" 
 comprising a small
neighborhood of that sharp peak. There is hardly any loss of generality in assuming this because,

unless it is true, we would consider the data too meager to permit any useful new inferences and

although the Bayesian procedure would still be valid in principle we would, like Ockham, `remove
the problem from our discourse' as being unproductive.

Parameters Unknown: Consider for the moment only the k'th model and drop the index k.

Let there be m parameters � � f�1 � � ��mg in the model and expand logL(�) about the maximum

likelihood point �̂ = f�̂1 � � � �̂mg:

logL(�1 � � ��m) = logLmax +
1

2

mX
i;j=1

@2 logL

@�i@�j
(�i � �̂i) (�j � �̂j) + � � � (24{7)

Then near the peak a good approximation is a multivariate gaussian function:

L ' Lmax exp

�
�1

2
(� � �̂)0 ��1 (� � �̂)

�
; (24{8)

with the \inverse covariance matrix"

(��1)i;j � �
�
@2 logL

@�i @�j

�
�=�̂

(24{9)

Our supposition is that the prior density does not vary appreciably over the high likelihood region


; then if we were estimating the parameters �j , in the approximation (24{8) we should be led to
estimates of the form
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(�j)est = �̂j �
p
�jj (24{10)

and the integral (24{2) is

p(DjM; I)' Lmax (2�)
m=2

p
det(�) p(�̂jM; I) (24{11)

Let us interpret this result in terms of parameter space volumes. We may de�ne the high likelihood

region 
 more explicitly by the conditions that:

(1) It is as compact as possible; within 
 the likelihood everywhere exceeds some nominal
threshold value L0. The volume of this region is then

V (
) =

Z
L>L0

d�1 � � �d�m : (24{12)

(2) The integrated likelihood should be given by Lmax V (
):

Lmax V (
) =

Z
L(�) dm� = Lmax (2�)

m=2
p
det � : (24{13)

Then a rectangular function equal to Lmax on 
, zero elsewhere, is a crude approximation to

the likelihood function and it has, in the present approximation, the same implications for model
comparison as does the actual likelihood function. These conditions determine the e�ective high{

likelihood volume of parameter space without any need to calculate the threshold L0:

V (
) = (2�)m=2
p
det � (24{14)

Note that this is just the normalization constant for the above multivariate gaussian function;y

Z
exp

�
�1

2
(� � �̂)0 ��1 (� � �̂)

�
� d�1 � � �d�m

V (
)
= 1 : (24{15)

Exercise (24.1). Evaluate the threshold L0 and the dimensions (�� �̂) of the high{likelihood
region 
 by direct evaluation of the integral (24{12). Note that the matrix �, being real,

symmetric, and positive de�nite, can be diagonalized: � = U �U�1, where U is an (m �m)
real orthogonal matrix; that is, its transpose is U 0 = U�1 so det(U) = �1, and �ij = �i �ij
is the diagonalized matrix. Now make the \spherical" change of variables from f�1 � � ��mg to
fx1 � � �xmg, where

(�k � �̂k) =

mX
i=1

Uki

p
�i xi

and perform the integrations in the x{space. Show that, in x{space, the region 
 is the interior

of an m{dimensional sphere of radius R ' (m=e)1=2; and that the exact volume of such a sphere

is �m=2Rm=(m=2)!. As a check, in the cases m = (1; 2; 3) this reduces to (2R; �R2; 4�R3=3)
respectively, as it should.

y Indeed, the maximumdensity for any continuous distribution p(x1 � � �xn) is dimensionally the reciprocal

of an n-dimensional volume, which can always be interpreted as the volume of a high{probability region.
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The right{hand side of (24{11) becomes Lmax V (
) p(�̂jM; I). But since by hypothesis p(�jM; I)
does not vary appreciably over 
, the quantity

W � 1

Lmax

Z
L(�)p(�jMI) dm� ' V (
) p(�̂jM; I) (24{16)

is for all practical purposes just the amount of prior probability contained in the high likelihood

region 
, and our fundamental model comparison rule now becomes
p(Mj jD; I)
p(MkjD; I)

=
p(Mj jI)
p(MkjI)

� (Lj)max

(Lk)max

� Wj

Wk

(24{17)

in which we see revealed, by comparison with (24{6), the Ockham factor (Wj=Wk) arising from the
internal parameter spaces of the models. In (24{17), the likelihood factor depends only on the data

and the model, while the Ockham factor depends also on the prior information about its internal
parameters. If two di�erent models achieve the same likelihoods (Lj)max, then in sampling theory

terms they account for the data equally well, and one would think that we have no basis for choice
between them. Yet Bayes' theorem tells us that there is an another quality in the models; the prior

information which may still give strong grounds for preference of one over the other. Indeed, the
Ockham factor may be so strong that it reverses the likelihood judgment.

But Where is the Idea of Simplicity?

The relation (24{17) has much meaning that unaided intuition could not (or at least, did not) see.

If the data are highly informative compared to the prior information, then the relative merit of two

models is determined by the product of two factors;

(1) How high a likelihood can be attained on the parameter space of a model?

(2) How much prior probability is concentrated in the high{likelihood region 
 picked
out by the data?

But neither of these seems concerned with the simplicity of the model (which seems for most of

us to refer to the number of di�erent assumptions that are made { for example, the number of
di�erent parameters that are introduced { in de�ning a model).

To understand this, let us ask: \How do we all decide these things intuitively?" Having observed
some facts, what is the real criterion that leads us to prefer one explanation of them over another?
Suppose that two explanations, A and B, could account for some proven historical facts equally
well. But A makes four assumptions, each of which seemed to us already highly plausible; while B

makes only two assumptions, but they seem strained, far{fetched, and unlikely to be true. Every
historian �nds himself in situations like this; and he does not hesitate to opt for explanation A,

although B is intuitively simpler. Thus our intuition asks, fundamentally, not how simple the
hypotheses are; but rather how plausible they are.

But there is a loose connection between simplicity and plausibility, because the more compli-
cated a set of possible hypotheses, the larger the manifold of conceivable alternatives, and so the

smaller must be the prior probability of any particular hypothesis in the set.

Now we see why `simplicity' could never be given a satisfactory de�nition (that is, a de�nition

that accounted in a satisfactory way for these inferences); it was a poorly chosen word, directing
one's attention away from the essential component of the inference. But from Centuries of unques-
tioned acceptance, the idea of `simplicity' became implanted with such an unshakable mindset that

several workers, even after applying Bayes' theorem where the contrary fact stares you in the face,
continued doggedly to try to interpret the Bayesian analysis in terms of simplicity!z

z Indeed, one author, for whom Ockham's razor was by de�nition concerned with simplicity, rejected
Bayesian analysis because of its failure to exhibit that error.
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Generations of philosophers opined vaguely that `simple hypotheses are more plausible' without
giving any logical reason why this should be so. We suggest that this should be turned around:

we should say rather that `more plausible hypotheses tend to be simpler'. An hypothesis that we
consider simpler is one that has fewer equally plausible alternatives.

None of this could be comprehended at all within the con�nes of orthodox statistical theory,

whose ideology did not allow the concept of a probability for a model or for a �xed but unknown
parameter. Orthodoxy tried to compare models entirely in terms of their di�erent sampling distri-

butions, which took no note of either the simplicity of the model or the prior information! But it

was unable to do even this, because then all the parameters within a model became `nuisance pa-
rameters' and that same ideology denied one any way to deal with them.? Thus orthodox statistics

was a total failure on this problem, and this held up progress for most of the 20'th Century.

It is remarkable that, although the point at issue is trivial mathematically, generations of
mathematically competent people failed to see it because of that conceptual mindset. But once

the point is seen, it seems intuitively obvious and one cannot comprehend how anyone could ever
have imagined that `simplicity' alone was the criterion for judging models. This just reminds us

again that the human brain is an imperfect reasoning device; although it is fairly good at drawing

reasonable conclusions, it often fails to give a convincing rationale for those conclusions. For this
we really do need the help of probability theory as logic.

Of course, Bayes' theorem does recognize simplicity as one component of the inference. But by

what mechanism does this happen? Although Bayes' theorem always gives us the correct answer
to whatever question we ask of it, it often does this in such a slick, e�cient way that we are left

bewildered and not quite understanding how it happened. The present problem is a good example
of this, so let us try to understand the situation better intuitively.

Denote by Mn a model for which � = f�1; : : : ; �ng is n{dimensional, ranging over a parameter
space Sn. Now introduce a new model Mn+1 by adding a new parameter �n+1 and going to a

new parameter space Sn+1, in such a way that �n+1 = 0 represents the old model Mn. We shall
presently give an explicit calculation with this scenario, but �rst let us think about it in general

terms.

On the subspace Sn the likelihood is unchanged by this change of model; p(Dj�;Mn+1; I) =

p(Dj�;Mn; I); � 2 Sn: But the prior probability p(�jMn+1; I) must now be spread over a larger
parameter space than before and will, in general, assign a lower probability to a neighborhood 


of a point in Sn than did the old model.

For a reasonably informative experiment, we expect that the likelihood will be rather strongly
concentrated in small subregions 
n 2 Sn and 
n+1 2 Sn+1 . Therefore, if with Mn+1 the

maximum likelihood point occurs at or near �n+1 = 0, 
n+1 will be assigned less prior probability

than is 
n with modelMn, and we have p(DjMn; I) > p(DjMn+1; I); the likelihood ratio generated
by the data will favor Mn over Mn+1. This is the Ockham phenomenon.

Thus, if the old model is already exible enough to account well for the data, then as a general

rule Bayes' theorem will, like Ockham, tell us to prefer the old model. It is intuitively simpler if by
`simpler' we mean a model that occupies a smaller volume of parameter space, and thus restricts us
to a smaller range of possible sampling distributions. Generally, the inequality will go the other way
only if the maximum likelihood point is far from �n+1 = 0 (i.e. a signi�cance test would indicate

a need for the new parameter), because then the likelihood will be so much smaller on 
n than on

n+1 that it more than compensates for the lower prior probability of the latter; as noted, Ockham
would not disagree.

But intuition does not tell us at all, quantitatively, how great this discrepancy in likelihoods

must be in order to bring us to the point of indi�erence between the models. Furthermore, having

? This and other criticisms of orthodox hypothesis testing theory were made long ago by Pratt (1961).
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seen this mechanism, it is easy to invent cases (for example, if the introduction of the new parameter
is accompanied by a redistribution of prior probability on the old subspace Sn) in which Bayes'

theorem may contradict Ockham because it is taking account further circumstances undreamt of
in Ockham's philosophy. So we need speci�c calculations to make these things quantitative.

An Example: Linear Response Models

Now we give a simple analysis that illustrates the above conclusions and allows us to calcu-
late de�nite numerical values for the likelihood and Ockham factors. We have a data set D �
f(x1; y1) � � �(xn; yn)g consisting of measured values of (x; y) in n pairs of observations. We may
think of x as the `cause' and y as the `e�ect' although this is not required. For the general relations

below the `independent variables' xi need not be uniformly spaced or even monotonic increasing
in the index i. From these data and any prior information we have, we are to decide between two

conceivable models for the process generating the data. For model M1 the responses are, but for
irregular measurement errors ei, linear in the cause:

M1 : yi = �xi + ei ; 1 � i � n (24{18)

while for model M2 there is also a quadratic term:

M2 : yi = �xi + �x2i + ei ; (24{19)

which represents, if � is negative, an incipient saturation or stabilizing e�ect (if � is positive, an

incipient instability). We may think, for concreteness, of xi as the dose of some medicine given
to the i'th patient, yi as the resulting increase in blood pressure. Then we are trying to decide

whether the response to this medicine is linear or quadratic in the dosage. But this mathematical
model applies equally well to many di�erent scenarios.y Whichever model is correct, the errors of

measurement of yi are supposed to be the same, and we assign a joint sampling distribution to
them:

p(e1 � � �enjI) =
nY
i=1

1p
2��2

� exp
�
� e2

i

2�2

�
=
� w
2�

�n=2
exp

n
�w
2
�ie

2

i

o
(24{20)

where w � 1=�2 is the `weight' parameter, more convenient in calculations than �2.

Digression: The Old Sermon Still Another Time: Again, we belabor the meaning of this,
as discussed in Chapter 7. In orthodox statistics, a sampling distribution is always referred to as
if it represented an `objectively real' fact, the frequency distribution of the errors. But we doubt

whether anybody has ever seen a real problem in which one had prior knowledge of any such

frequency distribution, or indeed prior knowledge that any limiting frequency distribution exists.

y For example, xi might be the amount of ozone in the air in the i'th year, yi the average temperature
in January of that year. Or, xi may be the amount of some food additive ingested by the i'th Canadian
rat, yi the binary decision whether that rat did or did not develop cancer. Or, xi may be the amount of
acid rain falling on Northern Germany in the i'th year, yi the number of pine trees that died in that year;
and so on. In other words, we are now in the realm of what were called `linear response models' in the
Preface, and the results of these calculations have a direct bearing on many currently controversial health
and environmental issues. Of course, many real problems will require more sophisticated models than we
are considering now; but having seen this simple calculation it will be clear how to generalize it in many
di�erent ways.
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How could one ever acquire information about the long{run results of an experiment that has never
been performed? That is part of the Mind{Projecting Mythology that we discard.

We recognize, then, that assigning this sampling distribution is only a means of describing

our own prior state of knowledge about the measurement errors. The parameter � indicates the
general magnitude of the errors that we expect; The prior information I might, for example, be

the variability observed in past examples of such data; or in a physics experiment it might not
be the result of any observations, but rather obtained from the principles of statistical mechanics,

indicating the level of Nyquist noise for the known temperature of the apparatus.

In particular, the absence of correlations in (24{20) is not an assertion that no correlations
exist in the real data; it is only a recognition that we have no knowledge of such correlations,

and therefore to suppose correlations of either sign is as likely to hurt as to help the quality of
our inferences. Thus in one sense, by being noncommittal about it, we are only being honest

and frankly acknowledging our ignorance. But in another sense, we are taking the safest, most

conservative course; using a sampling distribution which will yield reasonable results whether or
not correlations actually exist. But if we knew of any such correlations, we would be able to make

still better inferences (although not much better) by use of a sampling distribution which contains
them.

The reason for this is that correlations in a sampling distribution tell the robot that some

regions of the vector sample space are more likely than others even though they have the same
error magnitudes; then some details of the data that it would have to dismiss as probably noise,

can be recognized as providing further evidence about systematic e�ects in the model.

Back to the Problem: The sampling distribution for model M1 is then

M1 : p(Dj�M1) =
� w
2�

�n=2
exp

(
�w
2

nX
i=1

(yi � �xi)
2

)
(24{21)

The sum is

� =
X
i

(y2i � 2�yixi + �2x2i ) = n(y2 � 2�xy + �2x2) (24{22)

where the bars denote, as before, averages over the data. The maximum likelihood estimate (MLE)
of � is then found from @�=@� = n(�2xy + 2�x2) = 0 , or,

� = �̂ � xy

x2
(24{23)

which in this case is also called the `ordinary least squares' (OLS) estimate. The likelihood (24{21)
for model M1 is then

L(�;M1) =
� w
2�

�n=2
exp

n
�nw

2
[y2 � �̂2x2 + x2(�� �̂)2]

o
(24{24)

and we note in passing that, if we were using this to estimate � from the data, our result would be

(�)est = �̂� 1p
nwx2

(24{25)

Now, using (24{23), the `global' sampling distribution for model M1 in (24{3) contains two factors:

p(DjM1I) =

Z
p(Dj�M1) p(�jM1I) d� = Lmax(M1) �W (24{26)
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where

Lmax(M1) =
� w
2�

�n=2
exp

n
�nw

2

�
y2 � �̂2x2

�o
=
� w
2�

�n=2
exp

(
nw

2

xy2 � x2 y2

x2

)
(24{27)

W1 =

Z
exp

n
�nw

2
x2(�� �̂)2

o
p(�jM1I) d� : (24{28)

Now we are obliged to use a normalized prior for �; almost always it will be known that j�j cannot
be enormously large (else there would be such a catastrophe that we would not be concerned with

this problem); but we would seldom have any more speci�c prior information about it. We can
indicate this by assigning a prior density

p(�jM1I) =
1p
2��2

exp

�
� �2

2�2

�
(24{29)

which says that we do not know whether � is positive or negative, but it is highly unlikely that

j�j is much greater than �. As we saw in Chapter 6, when we are estimating parameters within a
single given model and have such vague prior information about them, the exact analytical form of

the prior makes no di�erence in the conclusions. That is, the e�ect of di�erent reasonable priors
�rst appears in our conclusions in perhaps the tenth decimal place; but since we are calculating

those �nal conclusions only to three or four decimal places, the e�ect of di�erent priors is not just
negligibly small; it is strictly nil. All priors that are essentially equal to a constant C = p(�̂jM; I)

over the region 
 of high likelihood, lead to the same conclusions; even the value of the constant
C cancels out. But when we are comparing di�erent models, C does not cancel out; it expresses

the prior range (in this case, C ' 1=2�) of values that � might have. Then we are free to choose
a Gaussian analytical form which makes it easy to do the integrations. Indeed, this choice can be

justi�ed also as representing the actual state of knowledge that we have in real problems. Then the

likely error � of our measurements is so much smaller than � that over the high likelihood region

, the prior density for � is essentially constant and equal to (2�)�1. Had we chosen a rectangular

prior with width 2�, it would have led to just the same result.

With the prior (24{29) we can do the integration (24{28) exactly, with the result

W1 =
1p

1 + nwx2�2
exp

(
� nwx2 �̂2

2(1 + nwx2�2)

)
(24{30)

But this can be simpli�ed greatly. In the �rst place, we see from (24{25) that the accuracy with

which the experiment can measure � is �=
p
nx2, and � is surely at least 100 times this, so

nwx2�2 = nx2
�2

�2
=

�
prior range for �

accuracy of the measurement of �

�2
(24{31)

and this is typically very large numerically, of the order of 104 or greater. Therefore (24{30) may
be written

W1 =
1p

nwx2�2
exp

�
� �̂2

2�2

�
(24{32)



2410 24: Final Causes 2410

But now � is surely also at least 100 times greater than �̂; so �̂1=2�2 is less than 10�4; and the
Ockham factor reduces, to all the accuracy we could use, simply to

W1 =
accuracy of � measurement

prior range for �
(24{33)

************************** MORE HERE!! *******************************

COMMENTS

Religious scholars who failed to heed the teachings of William of Ockham about issues amenable
to reason and issues amenable only to faith, were doomed to a lifetime of generating nonsense. Let

us note some of the forms this nonsense has taken.

Final Causes

It seems that any discussion of scienti�c inference must deal, sooner or later, with the issue of belief
or disbelief in �nal causes. Expressed views range all the way from Jacques Monod's forbidding us

even to mention purpose in the Universe, to the religious fundamentalist who insists that it is evil
not to believe in such a purpose.y We are astonished by the emotional, dogmatic intensity with

which opposite views are proclaimed, by persons who do not have a shred of supporting factual

evidence for their views.

But almost everyone who has discussed this has supposed that by a `�nal cause' one means
some supernatural force that suspends Natural Law and takes over control of molecular events

(that is, alters molecular positions and/or velocities in a way inconsistent with the equations of
motion) in order to ensure that some desired �nal condition is attained. In our view, almost all

past discussions have been awed by failure to recognize that operation of a �nal cause does not

imply controlling molecular details.

When the author of a textbook says: \My purpose in writing this book was to � � �", he
is disclosing that there was a true \�nal cause" governing many activities of writer, pen, paper,

secretary, word processor, typesetter, printer, extending usually over several years. When a chemist
imposes conditions on his system which forces it to have a certain volume and temperature, he is

just as truly the wielder of a �nal cause dictating the �nal thermodynamic state that he wished it

to have. A bricklayer and a cook are likewise engaged in the art of making �nal causes. But { and
this is the point usually missed { these �nal causes are macroscopic; they do not determine any

particular \molecular" details. In all cases, had the �ne details been di�erent in any one of billions
of ways, the �nal cause could have been satis�ed just as well.

The �nal cause may then be said to possess an entropy, indicating the number of microscopic

ways in which its purpose could have been realized; and the larger that entropy, the greater is the
probability that it will be realized. Thus the Principle of Maximum Entropy applies also here.

In other words, while the idea of a microscopic �nal cause runs counter to all the instincts of a
scientist, a macroscopic �nal cause is a perfectly familiar and real phenomenon, which we all invoke
daily. We can hardly deny the existence of purpose in the Universe when virtually everything we
do is done with some de�nite purpose in mind. Indeed, anybody who fails to pursue some de�nite

long{run purpose in the conduct of his life, is dismissed as an idler by his colleagues. Obviously,
this is just a familiar fact with no religious connotations; every scientist believes in macroscopic

�nal causes without thereby believing in supernatural contravention of the laws of physics. The

y For some, reasoning itself is evil: as one TV evangelist put it, \Reasoning is a sure sign that one is not

trusting God ."
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wielder of the �nal cause is not suspending physical law; he is merely choosing the Hamiltonian
with which the molecules of a system interact, whatever their precise microstate.

But while all this has no religious connotations, neither does it have any anti{religious ones.
Turning to the Universe as a whole, nothing compels us to suppose { or forbids us to suppose { that

some kind of conscious and purposive God is the ultimate controlling force; even one in charge of
all molecular details. But on what grounds does one suppose that He is concerned with human

welfare, much less that He created the solar system speci�cally for our bene�t?? Indeed, how do
we know that the opposite is not true? Perhaps God regards all life as an accidental cancerous

growth that can be tolerated for the moment, but which must be wiped out if it starts interfering
with His real design. How could anyone disprove that hypothesis? In a similar way, we tolerate the

existence of insect life out in the forest { as long as it stays there and does not interfere with our
purposes. But when the bugs creep into our gardens, houses, and granaries, we wipe then out.

Darwinian Evolution vs. Creationism

These considerations seem always to invoke another issue, for reasons that we do not understand
except that it is suggested by the book of Genesis in the Bible (although the issue itself makes no

reference to any particular religion). For some, belief in detailed �nal causes for everything is tied
to the dogma that every form of life must have been created by God for some speci�c purpose, and

this becomes a premise from which to attack the idea of Darwinian evolution.

Our problem with this is that we are unable to see any functional di�erence between Darwinian

evolution and Creationism; in what way would the observable facts be any di�erent? Since the

extinction of species and appearance of new species is not a mere `theory' but an unquestioned
fact (there are no dinosaurs or dodos running about today, and there is no evidence that humans

or horses existed in the time of the dinosaurs and plenty of evidence that they did not), one who
believes in an omnipotent God as the controlling force behind it all must, it seems to us, also believe

that whatever may be the facts, those must have been His intention; otherwise He could not be
omnipotent.

So when Darwin points out that there is a simple mechanism (natural selection) that can bring
about automatically the changes that we observe, in what way does this contradict the hypothesis

of an omnipotent God? Since that mechanism obviously exists, a believer in such a God must
also believe that He created that mechanism for the purpose of carrying out His plan. Indeed,

a God who failed to make use of such an obvious labor{saving device would seem rather stupid.
Far from attacking Darwin, creationists ought to thank him profusely for showing them how to

make their position so much more rational. We see this as much like the phenomenon noted in our

opening paragraph: a false premise that is irremovable because it is built into a model that is never
questioned.

Whatever the facts of biology { or physics, or chemistry, or geology, or astronomy { one
is always free to postulate that behind it all is a purposive God; and this hypothesis cannot be
con�rmed or refuted by observation because it is consistent with all facts whatever they may be. So
everyone is free to believe what he wishes about this, and whatever new knowledge we may acquire

in the future will never require him to change this opinion. But this is hardly a new discovery; a
famous exchange about it is reported to have occurred in 18'th Century France:

? Some such hypothesis seems to have been considered obvious by nearly everyone except Spinoza up to
the time of Newton; indeed, Newton himself thought that if the solar system were to drift gradually into
a con�guration incompatible with human life, it would be necessary for God to intervene and nudge the
planets back on their proper courses to save us. This seems hopelessly arrogant to us today, as Einstein
once noted in reply to a question from a news reporter. Much of the current discussion merely elaborates
views that Einstein expressed many years ago.
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Act I: Laplace sends Napoleon a just completed volume of his M�echanique C�eleste.
Although Napoleon is incapable of comprehending a word of it, when next they meet he

has to say something about it in acknowledgment.

Napoleon: \How is it that, although you say so much about the Universe, you
say nothing about its Creator?"

Laplace: \No, Sire, I had no need of that hypothesis."

Act II: Napoleon reports this conversation to Lagrange, who will never pass up an op-

portunity to get in a holier{than{thou dig at the atheist Laplace:

Lagrange: \Ah, but it is such a good hypothesis: it explains so many things!"

Act III: Napoleon reports Lagrange's comment back to Laplace, who has learned to

expect such posturing and is ready for it:

Laplace: \Indeed, Sire, Monsieur Lagrange has, with his usual sagacity, put his

�nger on the precise di�culty with the hypothesis: it explains everything, but
predicts nothing."

In other words, the hypothesis of a God is, as Laplace saw, logically disconnected from the subject
matter of science. That is the reason why scientists { Lagrange just as much as Laplace { have no

way of using the hypothesis in the conduct of science; and why science in turn can o�er no evidence
for or against the hypothesis. We need not take such extreme positions as either Monod or the

religious fundamentalists; it is su�cient if we recognize that, because of their logical independence,

we cannot use their relation to advance either science or religion { or to disprove either. Curiously,
nearly everyone who raises such issues does so in the belief that by denigrating science he is

somehow advancing religion; hardly anyone, except perhaps Richard Dawkins (1987), imagines
that by denigrating religion one is advancing science.

After all this, I shall surely be accused of cowardice if I fail to reveal my own personal views. Of

course, I do not believe in any theological system as actual fact, because for a scientist supernatural
explanations do not explain anything and there is no factual evidence for them in historical records

or arch�ology. But I recognize that, as a human institution, religion has �lled a need, brought
comfort to many, and that over the Centuries human behavior has undoubtedly been better than

it would have been without religion. So I do not advocate abandoning religion; only that religion
should now become more rational by abandoning claims of miracles, which only discredit it in the

minds of educated persions today. It would be greatly in their own interest to accept and use the

truths of science.y

For me, somewhat the same purpose is served instead by classical music. Thus, while I do

not participate in any religious activities, I will spend hours at the piano striving for exactly the

right phrasing of a short passge in a Beethoven sonata; and feel great satisfaction when I �nally
succeed. But whatever `reality' can be attributed to either religious or musical feelings is just what

we ourselves choose to attribute to them; it is in the eye of the beholder.

This discussion has taken us rather far a�eld, so we conclude it by listing where interested
readers may �nd a great deal about what modern scholarship has to say about the basis of Chris-
tianity and the Bible as historical fact. The Old Testament is analyzed in vast detail by Robert
H. Pfei�er (1948). F. C. Conybeare (1958) gives what we should call a rational analysis { indeed,

y Although I was raised as a Methodist Christian, I now recognize that the Jewish religion comes closer
to this goal than does Christianity, because it lays more emphasis on ethical teachings, and less on some
arbitrary system of theology tied to miracles.
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the only one known to us { of the origins of the New Testament, as a beautiful example of com-
plex plausible reasoning leading to virtually certain conclusions. Also, there is a peculiar di�culty

about the existence of a town called Nazareth in these early times, discussed by W. B. Smith
(1905). However, the �eld has erupted into controversy again in recent years, with many di�erent

conclusions asserted for many di�erent motives, by persons who simply ignore the facts of science.
For an account of this, see L. T. Johnson (1996).


