
Robotics and Autonomous Systems 47 (2004) 177–185

Teaching Bayesian behaviours to video game characters

Ronan Le Hy∗, Anthony Arrigoni, Pierre Bessière, Olivier Lebeltel
GRAVIR/IMAG, INRIA Rhˆone-Alpes, ZIRST, 38330 Montbonnot, France

Abstract

This article explores an application of Bayesian programming to behaviours for synthetic video games characters. We
address the problem of real-time reactive selection of elementary behaviours for an agent playing a first person shooter game.
We show how Bayesian programming can lead to condensed and easier formalisation of finite state machine-like behaviour
selection, and lend itself to learning by imitation, in a fully transparent way for the player.
© 2004 Published by Elsevier B.V.

Keywords:Bayesian programming; Video games characters; Finite state machine; Learning by imitation

1. Introduction

Today’s video games feature synthetic characters
involved in complex interactions with human players.
A synthetic character may have one of many different
roles: tactical enemy, partner for the human, strategic
opponent, simple unit amongst many, commenter, etc.
In all of these cases, the game developer’s ultimate
objective is for the synthetic character to act like a
human player.

We are interested in a particular type of synthetic
character, which we call abot in the rest of this article.
It is a player for a first person shooter game namedUn-
real Tournamentaugmented with the Gamebots con-
trol framework[1] (seeFig. 1). This framework pro-
vides a tridimensional environment in which players
have to fight each other, taking advantage of resources
such as weapons and health bonuses available in the
arena. We believe that this kind of computer game
provides a challenging ground for the development of
human-level AI.

∗ Corresponding author.
E-mail address:ronan.lehy@inrialpes.fr (R. Le Hy).

After listing our practical objectives, we will present
our Bayesian model. We will show how we use it to
specify by hand a behaviour, and how we use it to
learn a behaviour. We will tackle learning by exam-
ple using a high-level interface, and then the natural
controls of the game. We will show that it is possible
to map the player’s actions onto bot states, and use
this reconstruction to learn our model. Finally, we will
come back to our objectives as a conclusion.

1.1. Objectives

Our core objective is to propose an efficient way
to specify a behaviour for our bot. This can be bro-
ken down into several criteria that hold either for the
developers or for the player.

1.1.1. Development team’s viewpoint
Programming efficiency. One crucial concern for

the programmer is productivity: he needs both expres-
sivity and simplicity of the behaviour programming
system.

Limited computation requirements. The processing
time allotted to AI in games is typically between 10

0921-8890/$ – see front matter © 2004 Published by Elsevier B.V.
doi:10.1016/j.robot.2004.03.012

178 R. Le Hy et al. / Robotics and Autonomous Systems 47 (2004) 177–185

Fig. 1. Unreal Tournament and the Gamebots environment.

and 20% of the total processing time[2]; therefore it
is important for the behaviour system to be light in
terms of computation time.

Design/development separation. The industrial de-
velopment scheme often draws a separation between
game designers and software developers. The system
should allow the designers to describe behaviours at a
high conceptual level, without any knowledge of the
engine’s internals.

Behaviour tunability. The ability to program a vari-
ety of different behaviours, and to adjust each of them
without having to modify the system’s back end is es-
sential to the designer.

1.1.2. Player’s viewpoint
‘Humanness’. As defined by Laird[3], this im-

plies the illusion of spatial reasoning, memory, com-
mon sense reasoning, using goals, tactics, planning,
communication and coordination, adaptation, unpre-
dictability, etc. One important criterion for the player
is that the synthetic character does not cheat; its per-
ceptions and actions should be as much as possible
like a human player’s.

Behaviour learning. This feature is gradually find-
ing its place in modern games: the player can adjust
its synthetic partners’ behaviour. The behaviour sys-
tem should therefore support learning.

The game industry mostly addresses these goals
with specialised scripting systems, powerful but lead-
ing to behaviours hard to extend, maintain and learn
[4]. More integrated systems are envisioned in the
form of specialised inference engines or expert sys-
tems[5], but their actual use in the industry remains
limited, as they seem hard to control or because of

high computational costs. Flocking[6] is a popular
way to yield an impression of complexity while be-
ing based on simple elementary behaviours; however
it can hardly be generalised to any kind of behaviour.

Neural networks have also found their way to main-
stream video games[7], and provide a promising al-
ternative to scripted systems, well suited to learning,
although the tuning of produced behaviours can be
challenging. Decision trees have also been success-
fully used[8] as a way to implement fully supervised
and reinforced learning.

Nevertheless, finite state machines remain, in vari-
ous incarnations[9,10] the most common formalisa-
tion for reactive behaviours – they are easily mastered,
and combined with other techniques such as planning;
however they suffer from combinatorial explosion, and
remain hard to learn.

1.2. Technical framework

As mentioned earlier, we used the Gamebots frame-
work to conduct our experiments. This implies that
our bot communicates with Unreal Tournament via a
text protocol on a Unix socket. It receives messages
covering its perceptions: its position and speed, health
level, ammunition, visible opponents and objects, etc.
In return, it sends actions: move to a given point, ro-
tate, change weapon, etc.

The environment is perceived by the bot as a graph,
of which nodes are characteristic points of the topol-
ogy and various objects. The bot perceives only what
is in its field of vision.

As our objectives and framework have been ex-
posed, we shall now proceed to explicit our model
of behaviour selection, and discuss its interest for the
specification and learning of behaviours.

2. Bayesian model

Before examining our particular bot model, we re-
view in the next section the principles of Bayesian
programming[11].

2.1. Bayesian programming

Rational reasoning with incomplete and uncertain
information is quite a challenge. Bayesian program-

R. Le Hy et al. / Robotics and Autonomous Systems 47 (2004) 177–185 179

Fig. 2. Structure of a Bayesian program.

ming addresses this challenge, and relies upon a well
established formal theory: the probability theory[12].
As a modelling tool, it encompasses the framework of
Bayesian networks[13].

In our framework, a Bayesian program is made of
two parts: adescriptionand aquestion(Fig. 2).

The description can be viewed as a knowledge base
containing a priori information available about the
problem at hand. It is essentially a joint probability
distribution. The description is made up of three com-
ponents: (1) a set ofrelevant variableson which the
joint distribution is defined. Typically, variables are
motor, sensory or internal. (2) Adecompositionof the
joint distribution as a product of simpler terms. It is
obtained by applying Bayes theorem and taking ad-
vantage of the conditional independencies that may
exist between variables. (3) Theparametric formsas-
signed to each of the terms appearing in the decom-
position (they are required to compute the joint distri-
bution). These are calledparametricbecause they can
include parameters that may change (i.e. be learned or
adjusted) during the life of the model.

Given a distribution, it is possible to askquestions.
Questions are obtained first by partitioning the set of
variables into three sets: (1)Searched: the searched
variables, (2)Known: the known variables, and (3)
Free: the free variables (variables neither searched
nor known for the particular question, but participat-
ing in the model). A question is then defined as the
distribution:
P(Searched|Known). (1)

Given the description, it is always possible to answer
a question, i.e. to compute the probability distribution
P(Searched|Known). To do so, the following general
inference rule is used:

P(Searched|Known)

=
∑

FreeP(Searched Free Known)

P(Known)

= 1

z
×

∑

Free

P(Searched Free Known), (2)

whereZ is a normalisation term.

As such, the inference is computationally expen-
sive (Bayesian inference in general has been shown
to be NP-Hard). A symbolic simplification phase can
reduce drastically the number of sums necessary to
compute a given distribution. However the decompo-
sition of the preliminary knowledge, which expresses
the conditional independencies of variables, still plays
a crucial role in keeping the computation tractable.

2.2. Modelling our bot

2.2.1. Bayesian program
Our particular bot behaviour uses the following

Bayesian program.

2.2.1.1. Relevant variables.
St the bot’s state at timet. One ofAttack,

SearchWeapon, SearchHealth, Explore, Flee,
DetectDanger. These states correspond to
elementary behaviours, in our example
programmed in a classic procedural fashion.

St+1 the bot’s state at timet + 1.
H the bot’s health level att.
W the bot’s weapon att.
OW the opponent’s weapon att.
HN indicates whether a noise has been heard

recently att.
NE the number of close enemies att.
PW indicates whether a weapon is close att.
PH indicates whether a health pack is close att.

The elementary motor commands of the bot are the
values of variablesSt+1 and St . They include an at-
tack behaviour, in which the bot shoots at an oppo-
nent while maintaining a constant distance to him and
strafing; a fleeing behaviour, which consists in trying
to escape (locally) an opponent; behaviours to fetch
a weapon or a health bonus the bot noticed in its en-
vironment; a behaviour to detect possible opponents
outside the current field of view of the bot; and a be-
haviour to navigate around the environment and dis-
cover unexplored parts of it.

2.2.1.2. Decomposition.The joint distribution is de-
composed as

P(St St+1 H W OW HN NE PW PH)

= P(St)P(St+1|St)P(H |St+1)P(W |St+1)

180 R. Le Hy et al. / Robotics and Autonomous Systems 47 (2004) 177–185

P(OW|St+1)P(HN|St+1)P(NE|St+1)

P(PW|St+1)P(PH|St+1).

To write the above, we make the hypothesis that
knowingSt+1, any sensory variable is independent to
each other sensory variable (which makes our model
a Hidden Markov Model where observations are in-
dependent knowing the state). Although it may seem
to reduce the expressivity of our model, it allows to
specify it in a very condensed way; this point will be
emphasised upon inSection 2.2.2.

2.2.1.3. Parametric forms.
• P(St): uniform;
• P(St+1|St): table (this table will be defined in

Section 2.2.2);
• P(Sensor|St+1) with Sensor each of the sensory

variables: tables.

2.2.1.4. Identification. The tables we use are prob-
ability distribution tables describing Laplace laws,
whose parameters can be adjusted by hand, or using
experimental data. We describe these two processes in
Sections 3 (Specifying a Behaviour) and 4 (Learning
a Behaviour).

2.2.1.5. Question. Every time our bot has to take a
decision, the question we ask to our model is1

P(St+1|St H W OW HN NE PW PH)

= P(St+1 St H W OW HN NE PW PH)

P(St H W OW HN NE PW PH)

= P(St)P(St+1|St)
∏

i P(Svi|St+1)∑
St+1

(
P(St)P(St+1|St)

∏
i P(Svi|St+1)

)

= P(St+1|St)
∏

i P(Svi|St+1)∑
St+1

(
P(St+1|St)

∏
i P(Svi|St+1)

) .

Knowing the current state and the values of the sen-
sors, we want to know the new state the bot should
switch into. This question leads a probability distribu-
tion, on which we draw a value to decide the actual
new state. This state translates directly into an elemen-
tary behaviour which is applied to the bot.

1 In this equation,(Svi)i denotes variables such asH, W, etc.

2.2.2. Inverse programming
We shall now emphasise the peculiarities of our

method to specify behaviours, compared to one using
simple finite state machines (FSMs). The problem we
address is, knowing the current state and the sensors’
values, to determine the next state: this is actually
naturally accomplished using an FSM.

Let us consider the case where each of ourn sensory
variables hasmi (1≤ i ≤ n) possible values.

In an FSM modelling a behaviour[14,15], we would
have to specify, for each state, a transition to each
state, in the form of a logical condition on the sensory
variables.

It means that the programmer has to discriminate
amongst the

∏
i mi possible sensory combinations to

describe the state transitions. Not only does this pose
the difficult problem of determining the appropriate
transitions, but it raises the question of convenient for-
malised representation. This approach could actually
lead to several implementations, but will possibly[10]
result in a script resembling the following:

if St = A and W= Noneand OW= Nonethen
if HN = Falseand NE! = None
or NE= TwoOrMorethen

St + 1← F
else if HN = True or NE= One

and PW= True then
St +1← A

else. . .

This kind of script is hard to write and hard to main-
tain.

In contrast, our approach consists in giving, for each
sensory variable, for each possible state, a distribution
(i.e. mi numbers summing to 1). In practice, we write
tables likeTable 1, which representsP(H |St+1). Val-
ues ofH are enumerated in the first column, those of
St+1 in the first line; cells markedx are computed so
that each column sums to 1.

Table 1
P(H|St+1)

H|St+1 A SW SH Ex F DD

Low 0.001 0.1 x3 0.1 0.7 0.1
Medium 0.1 x2 0.01 x4 0.2 x5

High x1 x2 0.001 x4 0.1 x5

R. Le Hy et al. / Robotics and Autonomous Systems 47 (2004) 177–185 181

Moreover, instead of specifying the conditions that
make the bot switch from one state to another, we
specify the (probability distribution of the) sensors’
values when the bot goes into a given state. This way of
specifying a sensor under the hypothesis that we know
the state is what makes us call our method ‘inverse
programming’.

Although somewhat confusing at first, this is the
core advantage of our way to specify a behaviour. As
a matter of fact, we have to describe separately the
influence of each sensor on the bot’s state, thereby re-
ducing drastically the quantity of needed information.
Furthermore, it becomes very easy to incorporate a
new sensory variable into our model: it just requires
to write an additional table, without modifying the ex-
isting ones.

Finally, the number of values we need in order to
specify a behaviour isS2+ snm, wheres is the num-
ber of states,n the number of sensory variables, and
m the average number of possible values for the sen-
sory variables. It is therefore linear in the number of
variables (assumingm constant).

3. Specifying a behaviour

3.1. Basic specification

A behaviour can be specified by writing the tables
corresponding toP(St+1|St) andP(Sensor|St+1) (for
each sensory variable). Let us consider for instance
Table 1, which gives the probability distribution for
H knowing St+1. We read the first column this way:
given the fact that the bot is going to be in state
Attack, we know that it has a very low probability
(0.001) to have a low health level, a medium probabil-
ity (0.1) to have a medium health level, and a strong
chance (x = 1− 0.001− 0.1) to have a high health
level.

This form of specification allows us to formalise
conveniently the constraints we want to impose on the
behaviour, in a condensed format, and separately on
each sensory variable. For instance,Table 1formalises
the relation of the bot’s health level to its state: if it
starts attacking, then its health is rather high; if it starts
searching for a health pack, then its health is very prob-
ably low; if it starts fleeing, then its health is probably
rather low, but with a high degree of uncertainty.

Table 2
P(H|St+1)

St+1|St A SW SH Ex F DD

A x1 x2 x3 x4 x5 x6

SW 10−5 x2 10−5 10−5 10−5 10−5

Ex 10−5 10−5 10−5 x4 10−5 10−5

F 10−5 10−5 10−5 10−5 x5 10−5

DD 10−5 10−5 10−5 10−5 10−5 x6

All tables on the sensory variables are built on the
same pattern; the one givingP(St+1|St) (seeTable 2) is
special. It gives some sort of basic transition table; i.e.
it answers in a probabilistic way the question: knowing
nothing but the current state, what will be the next
state?

The answer our sample table gives is: tend to stay
in your current state (notice thexs on the diagonal) or
switch to attack (notice thexs on the first line) with
the same high probability; switch to other states with
a very low probability (10−5 – which in our example
we found to be representative of ‘very low’).

Again, this makes a parallel with an FSM with
probabilistic transitions: with our transition table
P(St+1|St), we give a basic automaton upon which
we build our behaviour by fusing the tendencies given
separately on each sensory variable.

3.2. Tuning the behaviour

Tuning our behaviour amounts to tuning our prob-
ability distributions. For instance, to create aberserk
character that is insensible to its health level, we put
only uniform distributions (i.e. in our notation, only
xs) in tableP(H |St+1). A berserkis also very aggres-
sive, so the transition table we proposed inTable 2is
quite adapted. A transition table for a more prudent
character would not have thosexs on the first line, so
that the stateA would not be particular.

To create a unique behaviour, we therefore have to
review all our tables, i.e. the influence of each sen-
sory variable on the character according to the said
behaviour.

3.3. Results

Several observations can be made when out bots
are playing the game. The first is that their behaviour
corresponds to what we want: the behaviour switch-

182 R. Le Hy et al. / Robotics and Autonomous Systems 47 (2004) 177–185

ing occurs reasonably, given the evolution of the sen-
sory variables. The second is that they cannot compete
with humans playing the game. Noting this allows to
pinpoint the fact that our method’s interest mostly re-
sides in the gain of ease and power in the design of
behaviours. It does not pretend to overcome the limi-
tations of the elementary behaviours we are switching
between, nor can it do more than what the Gamebots
framework allow, in terms of perception and action.
Therefore, what we aimed for, and finally obtained,
is a reliable, practical and efficient way to specify the
real-time selection of elementary behaviours.

Our attempt to tune the behaviour shows that the
differences between our ‘reasonable’ bot and our
‘aggressive’ bot are visible, and correspond to what
we tried to specify in the tables. For instance, the
aggressive bot is excited by the presence of several
opponents, whereas this situation repels the reason-
able bot; and the aggressive bot is not discouraged to
attack when its health level goes low.

4. Learning a behaviour

Our goal now is to teach the bot a behaviour, instead
of specifying all the probability distributions by hand.
It requires to be able to measure at each instant sensory
and motor variables of the controlled bot. In particular,
it is necessary to determine the stateSt at each instant.
It can be done by letting the player specify it directly
in real time, or by inferring it from his natural actions
in the game.

4.1. Selecting behaviours

This form of learning by example presents a simple
interface to the player, shown onFig. 3.

The player controls in real time the elementary be-
haviour that the bot executes, by using buttons that
allow switching to any state with a mouse click. In ad-
dition to the ordinary Unreal Tournament window on
the right, part of the internal state of the bot is summed
up in the learning interface on the left.

4.2. Recognising behaviours

While the previous method of teaching a behaviour
works, it deprives the player of the interface he is used
to; his perceptions and motor capabilities are mostly

Fig. 3. Interface used to teach the bot: on the right is the normal
Unreal Tournament window showing our bot; on the left is our
interface to control the bot.

adjusted to the bot’s. In order to solve this problem, it
is possible to give the player the natural interface of the
game, and try to recognise in real time the behaviour
he is following.

To recognise the human’s behaviour from his
low-level actions, we use a heuristic programmed in
a classical imperative fashion. It involves identifying
each behaviour’s critical variables (for instance, at-
tack is characterised by distance and speed of the bot
to characters in the centre of his field of view), and
triggering recognition at several timescales.

Recognition is done by examining a series of cri-
teria in sequence; the first that matches is chosen.
The first criterion is a characteristic event which is
back-propagated to states in the past not yet recognised
(for instance picking a health bonus indicates that the
character has been looking for health). The second ex-
amines critical variables over a fixed period (for in-
stance, danger checking is characterised by a com-
plete rotation with little translation, in a short amount
of time). Finally, some short-term variations of criti-
cal variables are examined (like attacking and fleeing,
which consist in moving in a particular direction in
the presence of opponents). Exploration is a default
state, when a state does not match any of the criteria.

We do this recognition off-line, on data representing
10–15 min of game-play; processing these data and
producing the tables that represent our behaviour takes
5–10 s.

4.3. Results

Table 3 shows a comparison between different
specification methods. Numbers are the average point

R. Le Hy et al. / Robotics and Autonomous Systems 47 (2004) 177–185 183

Table 3
Performance comparison on learned, hand-specified, and native
Unreal bots (lower is better)

Recognition learned, aggressive 4.4
Recognition learned, cautious 13.9
Selection learned, aggressive 45.7
Manual specification, aggressive 8.0
Manual specification, cautious 12.2
Manual specification, uniform 43.2
Native (level 3/8) UT bot 11.0

difference to the winning bot, over 10 games won by
the first bot reaching 100 kills (for example, a bot with
76 points at the end of a game has a point difference
of 24 to the winning bot, since the game ends as soon
as a bot reaches 100 points). Therefore, a bot win-
ning all games would have a score of zero. Our bots
compare well to the nativeUnreal Tournamentbot,
whose skill corresponds to an average human player.
Aggressive bots (grey lines) perform significantly
better, and learning by recognition does much better
than learning by selection, along with hand speci-
fication.

Lessons from these results can be summed up in the
following way (we will refer here toTable 4, which is
the same asTable 1, but learnt by recognition):

1. learnt tables share common aspects with hand-written
tables (as for the transition tableP(St+1|St); for
instance, in the fleeing stateF, health level is much
more probably low or medium than high;

2. differences in behaviour of the teacher influence
the learnt behaviour: aggressivity (or the lack of it)
is found in the learnt behaviour, and translates into
performance variations (in our set-up, aggressive
behaviours seem to be more successful);

3. nevertheless, differences between hand-specified
and learnt models are noticeable; they can be
explained by

Table 4
Learnt P(H|St+1)

H|St+1 A SW SH Ex F DD

Low 0.179 0.342 0.307 0.191 0.457 0.033
Medium 0.478 0.647 0.508 0.486 0.395 0.933
High 0.343 0.011 0.185 0.323 0.148 0.033

(a) player-specific behaviours: humans almost
always attack and do not retreat; another
example is the low probability ofP(H =
High|St+1 = SW) in the learnt table (dark
grey cell on Table 4): it can be explained
by the fact that human players give a much
higher priority to searching a good weapon
over searching for health bonuses;

(b) additional information: some parts of the
hand-written tables are specified as uniform
(as a result from a refusal or impossibil-
ity to specify theoretically a link between
two events, like the value of the opponent’s
weapon knowing that the bot is exploring),
whereas their learnt counterparts include in-
formation;

(c) perceptive differences: a human player and a
bot have a different perception of sound (the
human perceives direction combined with the
origin of sound, like an impact on a wall or
the sound of the shooting itself, whereas the
bot senses only direction);

(d) bias induced by data quantity: a human player
has almost always a medium health level
(which is due to a poor choice of discretization
for the health level variable), which explains
higher values in the learntTable 4 (line of
light grey cells). The discretization is subject
to the following constraints: its being too fine
makes specifying behaviours by hand harder;
it also slows down inference, and increase the
amount of data necessary to learn the model;
on the other hand, a coarse discretization
impedes the expressiveness of the model, by
coagulating sensory states too different from
one another. A rule to choose discretization is
therefore to take a (possibly non-linear) scale
where real values from two successive steps
are deemed qualitatively different by a human
player. For instance, the health level could
be better split in the following way:very low
beneath 70,low between 71 and 95,medium
between 96 and 110,high between 111 and
130,very highabove 131.

4. our learning methods lead to functioning be-
haviours; learning using behaviour recognition
scores best, and allows to reach the level of an
average native UT bot.

184 R. Le Hy et al. / Robotics and Autonomous Systems 47 (2004) 177–185

5. Discussion

5.1. Evaluation

We shall now come back to the objectives we listed
at the beginning, to try and assess our method in prac-
tical terms.

5.1.1. Development team’s viewpoint
Programming efficiency. Our method of behaviour

design relies upon a clear theoretical ground. Pro-
gramming the basic model can use a generic Bayesian
programming library, and needs afterwards little more
than the translation into C++ (for instance) of the
mathematical model. Design is really expressed in
terms of practical questions to the expertise of the
designer, like ‘if the bot is attacking, how high is
his health level?’; it does not require a preliminary
formalisation of the expected behaviour to program.
Moreover, in our model behaviours are data (our
tables). It means that they can easily be loaded
and saved while the behaviour is running, or ex-
changed amongst a community of players or deve-
lopers.

Limited computation requirements. The computa-
tion time needed for a decision under our model can
be shown to be linear in both the number of sensory
variables and the number of states.

Design/Development separation. Development
amounts to incorporating the Bayesian framework
into the control architecture, and establishing the
Bayesian model; design consists in establishing rela-
tions between the variables in the form of probability
distributions. A designer really has to know about
what the bot should do, but does not need any knowl-
edge of the implementation details; he needs but a
light background on probabilities, and no scripting or
programming at all.

Behaviour tunability. We have seen that our way
of specifying behaviours gives a natural way to for-
malise human expertise about behaviours, and that it
implies that tuning a behaviour is possible, as they
are expressed in natural terms and not in artificial
logical or scripting terms. Moreover, the quantity of
data needed to describe a behaviour is kept small
compared to an FSM, and this helps keeping the
analysis and control of a behaviour tractable for the
designer.

5.1.2. Player’s viewpoint
‘Humanness’. This criterion is hard to assess, al-

though it can be done[16] in ways comparable to the
Turing test[17]. Our method of specifying a behaviour
helps the designer translate his expertise easily, and
therefore gives him a chance to build a believable bot.

Behaviour learning. We have seen that learning un-
der our model is natural: it amounts to measuring fre-
quencies. This is a chance for the player to teach its
teammate bots how to play. Recognising high-level
states on the basis of low-level commands is possible,
and allows a player to adjust a behaviour completely
transparently, with the original controls of the game.

5.2. Perspectives

We have shown a way to specify FSM-like action
selection models for virtual robots, and to learn these
models by example. The recognition involved in learn-
ing from the natural actions of a player in the game
remains a classically programmed heuristic; an obvi-
ous perspective is to formalise it within the Bayesian
framework, in order to perform probabilistic behaviour
recognition. This would grant more adaptability to
variations in the behaviour model.

Acknowledgements

This work was partially funded by a grant from
the French Ministry of Research, the BIBA project
(funded by the European Commission), and the CNRS
ROBEA projectModéles Bayésiens pour la Généra-
tion de Mouvement.

References

[1] G. Kaminka, M.M. Veloso, S. Schaffer, C. Sollitto,
R. Adobbati, A.N. Marshall, A. Scholer, S. Tejada,
Gamebots: the ever-challenging multi-agent research test-bed,
Communications of the ACM, January 2002.

[2] S. Woodcock, Game AI: the state of the industry 2000–2001,
Game Developer, July 2002.

[3] J. Laird, Design goals for autonomous synthetic characters,
draft (2000), http://www.ai.eecs.umich.edu/people/laird/
papers/AAAI-SS00.pdf.

[4] [Baldur’s Gate] Complete Scripting Guide, SimDing0,
http://www.tutorials.teambg.net/scripting/index.htm

http://www.ai.eecs.umich.edu/people/laird/papers/AAAI-SS00.pdf
http://www.ai.eecs.umich.edu/people/laird/papers/AAAI-SS00.pdf
http://www.tutorials.teambg.net/scripting/index.htm

R. Le Hy et al. / Robotics and Autonomous Systems 47 (2004) 177–185 185

[5] J.E. Laird, It knows what you’re going to do: adding
anticipation to a quakebot, in: Proceedings of the AAAI
Spring Symposium Technical Report, 2000.

[6] S. Woodcock, Flocking with teeth: predators and prey, in: M.
Deloura (Ed.), Game Programming Gems 2, Charles River
Media, 2001, pp. 330–336.

[7] Neural Network AI for Colin McRae Rally 2.0, Website
(Generation5), http://www.generation5.org/content/2001/han
nan.asp.

[8] Artificial intelligence: Black and white, Website (Gamespot),
http://www.gamespot.com/gamespot/features/pc/hitech/p201.
html.

[9] E. Dysband, A generic fuzzy state machine in C++, in: M.
Deloura (Ed.), Game Programming Gems 2, Charles River
Media, 2001, pp. 337–341.

[10] Unrealscript language reference,http://unreal.epicgames.com/
UnrealScript.htm.

[11] O. Lebeltel, P. Bessière, J. Diard, E. Mazer, Bayesian
Robot Programming, Autonomous Robots, Vol. 16, Kluwer,
Dordrecht, January 2004, pp. 49–79.

[12] E.T. Jaynes, Probability Theory: The Logic of Science,
unpublished,http://bayes.wustl.edu/(1995).

[13] M. Jordan (Ed.), Learning in Graphical Models, MIT Press,
1998.

[14] E. Dysband, A finite-state machine class, in: M. Dekiyra
(Ed.), Game Programming Gems, Charles River Media, 2000,
pp. 237–248.

[15] M. Zarozinski, Imploding combinatorial explosion in a fuzzy
system, in: M. Deloura (Ed.), Game Programming Gems 2,
Charles River Media, 2001, pp. 342–350.

[16] J.E. Laird, J.C. Duchi, Creating human-like synthetic
characters with multiple skill-levels: a case study using the
Soar quakebot, in: Proceedings of the AAAI Fall Symposium
Technical Report, 2000.

[17] A.M. Turing, Computing machinery and intelligence, Mind
59 (236) (1950) 433–460.

Ronan Le Hy received the Dipl̂ome
d’Ingénieur from the Ecole Centralede
Nantes, France, in 2001, and the Diplôme
d’Etudes Approfondies in cognitive sci-
ence from the Institut National Polytech-
nique de Grenoble (INPG), France, in
2002. He is currently pursuing Ph.D. de-
gree in cognitive science from the INPG.
His current research interests includes
programming and learning behaviours for
synthetic characters.

Anthony Arrigoni received the Dipl̂ome
d’Ingénieur from the Département Télé-
com of the Institut National Polytech-
nique de Grenoble (INPG), France, in
2003, and the Dipl̂ome d’Etudes Appro-
fondies in robotics from the INPG the
same year. He has explored the learning
of behaviours for video game characters.

Pierre Bessière is a senior researcher at
CNRS (Centre National de la Recherche
Scientifique) since 1992. He took his
Ph.D. in artificial intelligence in 1983
from the Institut National Polytech-
nique of Grenoble, France. He did a
post-doctorate at the Stanford Research
Institute and then worked for several
years in the computer science indus-
try. He has been working for the last

15 years on evolutionary algorithms and Bayesian inference.
He leads, with Emmanuel Mazer, The ‘LAPLACE Research
Group: Stochastic models for perception, inference and action’
(http://www.laplace.imag.fr).

Olivier Lebeltel received his Ph.D.
in cognitive sciences from the Institut
National Polytechnique de Grenoble,
France, in 1999. Currently, he is a
research associate at the Institut Na-
tionalde Recherche en Informatique et
Automatique of Grenoble. He works
on modelling, inference, and learning
with Bayesian approaches applied to
bio-inspired robotics and virtual reality.

http://www.generation5.org/content/2001/hannan.asp
http://www.generation5.org/content/2001/hannan.asp
http://www.gamespot.com/gamespot/features/pc/hitech/p2_01.html
http://www.gamespot.com/gamespot/features/pc/hitech/p2_01.html
http://unreal.epicgames.com/UnrealScript.htm
http://unreal.epicgames.com/UnrealScript.htm
http://bayes.wustl.edu/
http://www.laplace.imag.fr

	Teaching Bayesian behaviours to video game characters
	Introduction
	Objectives
	Development team's viewpoint
	Player's viewpoint

	Technical framework

	Bayesian model
	Bayesian programming
	Modelling our bot
	Bayesian program
	Relevant variables
	Decomposition
	Parametric forms
	Identification
	Question

	Inverse programming

	Specifying a behaviour
	Basic specification
	Tuning the behaviour
	Results

	Learning a behaviour
	Selecting behaviours
	Recognising behaviours
	Results

	Discussion
	Evaluation
	Development team's viewpoint
	Player's viewpoint

	Perspectives

	Acknowledgements
	References

